Beyond Human Error

A HOF Approach to understanding incidents and controlling major risks

European Rail Safety Days, November 2021

Porto

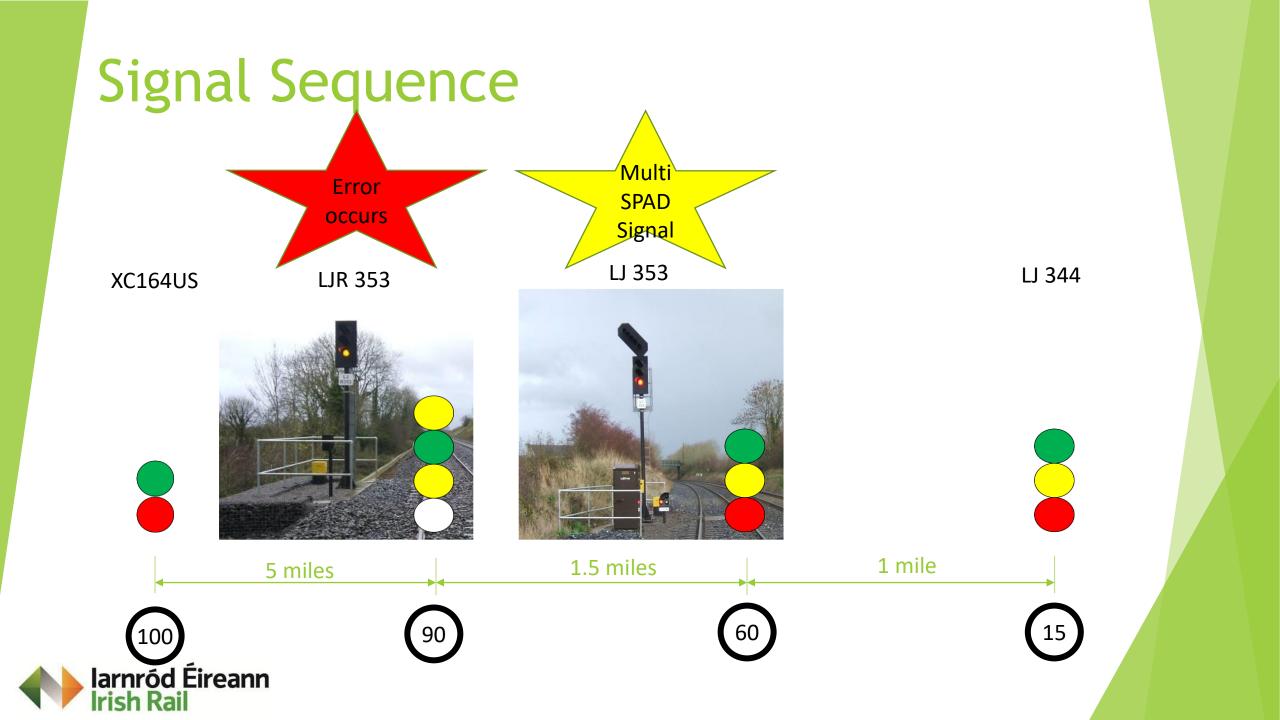
Introduction

- The link between 'Controlling Major Risks' and Human and Organisational Factors
- Three case studies:
 - Multi-SPAD signal
 - Increase in driver incidents over time in one depot
 - Multiple overspeeds through a PSR

How does including HOF in investigations contribute to controlling major risks?

Questioning attitude

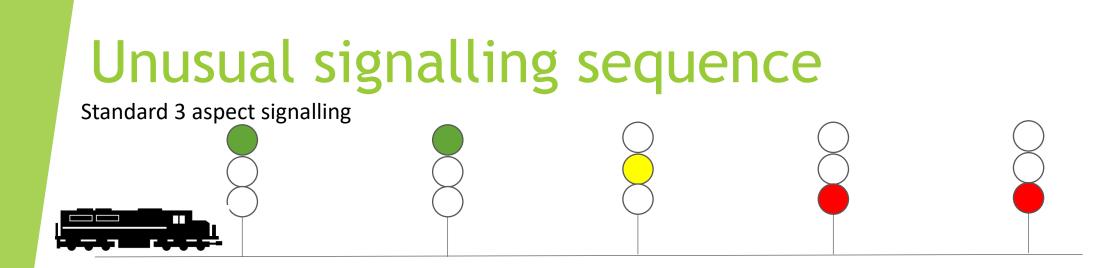
- Avoid attributing incidents to simply 'human error'. We question what may have influenced the error and how those factors can be addressed, rather than just focussing on the individual
- Resilience
 - Looking for system-wide factors which can be improved for the benefit of all end-users and in a range of conditions
- Risk awareness
 - Raising awareness of how people operate, and what can contribute to errors, creating major risks

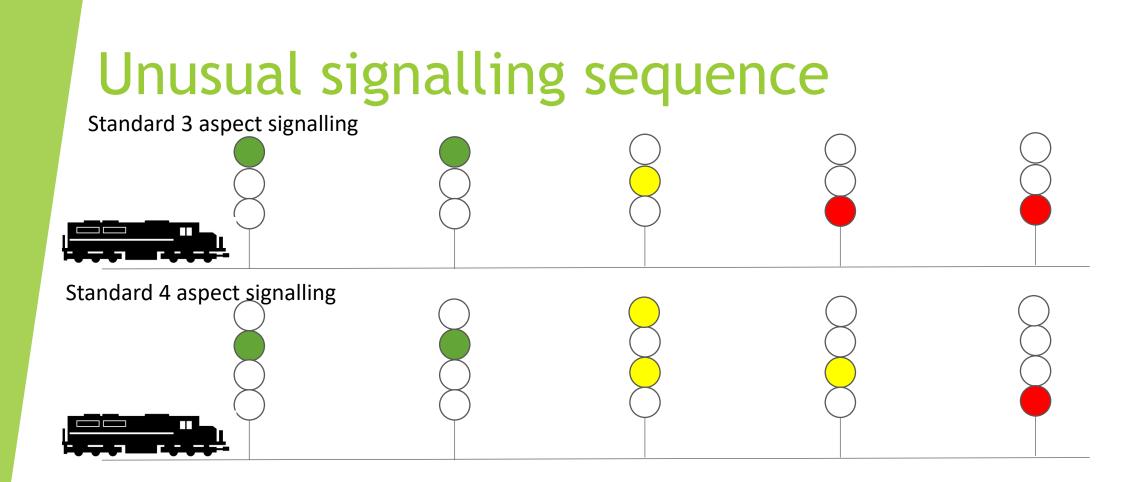


Case Study 1: Multi-SPAD Signal

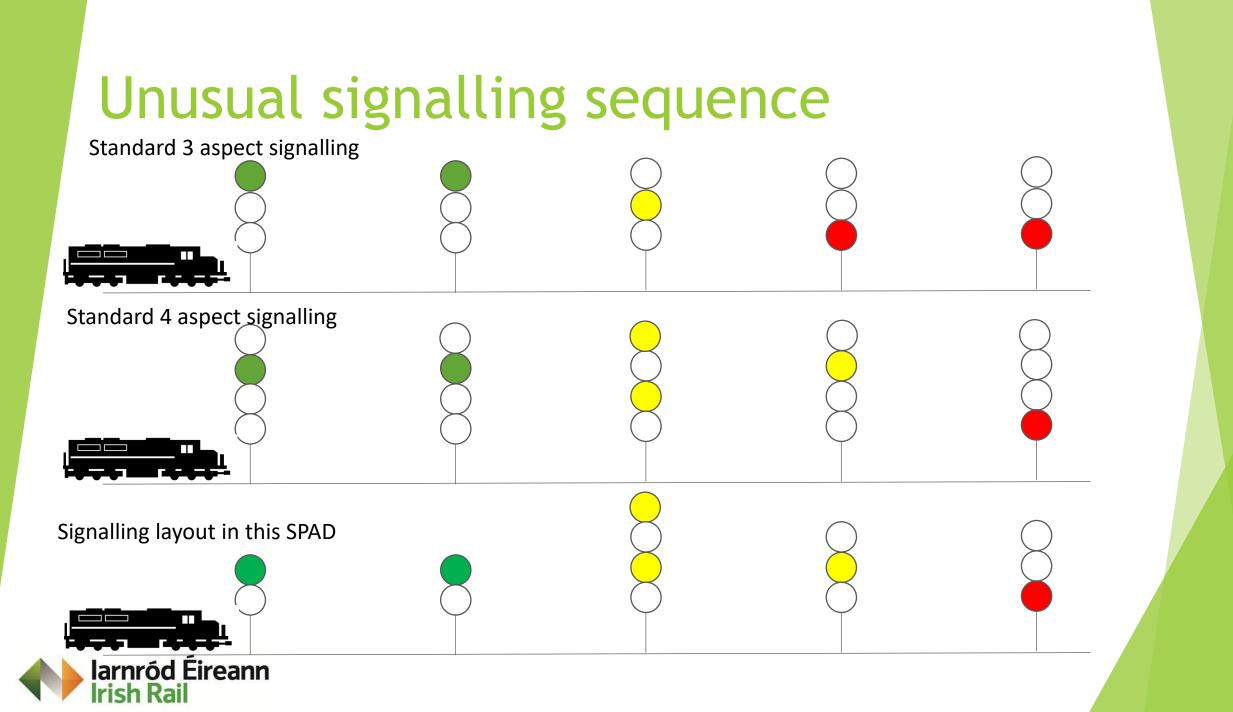
- Three SPADs at this signal in 8 years
 - 2011, 2017, 2019
- Signal is on the approach to a loop platform
 - Signal at the end of the loop is approach controlled
 - Therefore, signal is usually encountered at yellow
 - Approximately once a day, a train crosses in front of a train scheduled to approach, so the signal is red

Reports of SPAD investigations


- Causal factors included:
 - Drivers not reacting correctly to yellow signal aspects and CAWS warnings
 - Late braking due to distraction
 - Reliance on past experience
 - Issues with route learning
 - Lack of use of error prevention techniques
- All focussed on the individual errors made
- No insight into the specific risk at this location


HF Analysis Approach

- Based on the information contained with the existing investigation reports
- SPAD Hazard Checklist
 - Based on cognitive task analysis of the train driving task and a database of human factors SPAD hazards
 - 69 checklist items over 5 categories
 - Vigilance, Detection, Recognition, Interpretation, Action failures
- Accimap constructed for the 2017 event
 - Graphical method of analysing the systemic causes of accidents and incidents
 - Event is placed at the bottom and causes branch upwards



Factors identified as possibly contributing to the SPADs

- Approach control on the signal in the platform sets a strong expectation for the signal before the one SPADed to be a double yellow
- The isolated 4 aspect signal introduces the possibility to confuse which signal is red
- CAWS uses the same tone for yellow and double yellow aspects
- Restricted view of the SPADed signal limits the opportunity to recover from the error

Case Study 2: Increase in driving incidents

- Increasing trend in driving incidents identified in a depot
- Investigation report findings:
 - Provision of incorrect information (fail to call incidents)
 - Fog
 - Reliance on past experience
 - Non-compliance with rules
 - Non-application of non-technical skills
- Human factors support requested to determine whether there was any additional support that could be offered

Approach to HF Analysis

- Interviews with driver competence assessors and depot managers
 - Reported an increase in driver rest day working
 - Correlation between drivers having incidents and drivers who tended to work rest days
 - All internal rules around maximum days worked, hours worked, etc. were complied with
- Application of the Fatigue Risk Index (FRI) to actual hours worked
 - FRI is applied to the base roster, but this does not account for shift swaps or rest days worked
 - Hours for 6 drivers over 88 days were put through the FRI
 - 3 drivers tend not to work rest days
 - 3 driver tend to work rest days

Results

	Fatigue scores		Risk scores	
	Average	Maximum	Average	Maximum
Non-rest day workers				
Driver 1	10.2	21.2	0.9	1.1
Driver 2	8.4	25.1	0.9	1.2
Driver 3	5.9	12	1.0	1.6
Rest day workers				
Driver 4	11.8	25.5	1.0	1.4
Driver 5	9.2	25.2	1.2	2.2
Driver 6	9.6	20.5	1.1	1.6

Case Study 3: Overspeed Analysis

- Increasingly using automatic detection of overspeeds through temporary and permanent speed restrictions
- Nine overspeeds were recorded through one PSR in 1 year
 - Other PSRs on the same track recorded no overspeeds
- Findings of investigations:
 - Lost focus and situation awareness
 - Did not use self-checking skills
 - Did not use error prevention techniques
 - Did not comply with the rule book

HF Analysis Approach

- Cab-ride in each direction over the full route, and for each section of monitored PSR notes were taken on:
 - The length and permitted speed
 - The permitted speeds approaching the PSR
 - The railway features within the PSR, e.g. stations, loops, points, level crossings, signals, vegetation
 - Driver observations and behaviour

HF Results

Several factors identified which could contribute to the overspeeds

- 1. Underload the only features through the PSR were two whistle boards
- 2. Speed differential Speed through the PSR is 70mph, compared to line speed of 80mph
- 3. Lack of visual speed cues PSR is situated in a bog with few trees or vegetation

Discussion

- Questioning attitude: Developing a questioning attitude in relation to why multiple individuals make the same error is very important in understanding the risks to be controlled
 - Case study 1: Design of signalling system influences SPAD rates
 - Case study 2: Rostering system influences number of incidents
 - Case study 3: Track layout influences speed related errors
- Resilience: Finding system level interventions can help reduce the potential for errors
 - Case study 1: Change signalling standards
 - Case study 2: Recruit more drivers
 - Case study 3: Install additional speed sign
- Risk awareness: Raise awareness of how system design can influence error so that the importance of human centred design, and reporting, is realised

Thanks for listening

