

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 1/65

ERTMS/ETCS

On-line Key Management FFFIS

REF : SUBSET-137

ISSUE : 1.0.0

DATE : 17-12-2015

Company Technical Approval Management approval

ALSTOM

ANSALDO

AZD

BOMBARDIER

CAF

SIEMENS

THALES

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 2/65

1. MODIFICATION HISTORY

Issue Number

Date

Section Number Modification / Description Author

0.1.0

20-05-2015

All Release for review KMS WG

0.1.1

05-08-2015

§ 3.3, 3.4,

4.1.1.2, 4.2.3.3,

Table 19,

6.3.3.5

§ 3.1, 3.2, 4.1

§ 3.1.1.4

§ 3.3

§ 3.4

§ 3.4.1.1

§ 4.1.1.3

§ 4.2.3

§ 4.3.1.6

§ 3.1.1.2,

4.2.3.7, 4.3.1,

5.3.1.2, 5.3.2.2

§ 5.3.3.5

§ 5.3.5.4

§ 5.4.2.2

§ 5.6.1, 5.3.8.5

Fig. 10

§ 5.6.1.6

Fig. 1

§ 5.2.3

§ 5.4.5, 5.2.12

§ 5.2.3, 5.2.2,

5.2.4.

Review comments from EUG :

 Comment 3 ;

 Comment 5 ;

 Comment 8 ;

 Comment 11 ;

 Comment 12 ;

 Comment 14 ;

 Comment 15 ;

 Comment 21 ;

 Comment 23 ;

 Comment 36 ;

 Comment 41 ;

 Comment 42 ;

 Comment 46 ;

 Comment 50 ;

 Comment 52 ;

 Comment 54 ;

 Comment 16 ;

 Comment 31 ;

 Comment 47 ;

 Comment 30 (1)

FH

0.1.2

06-08-2015

§ 5.2, 5.3

Review comment :

 Comment 27 (no revision

mark for section switch) ;

FH

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 3/65

0.1.3

17-08-2015

§ 4.3.1, 4.3.3,

6.1, 6.2.3

Comment 2

TN

0.1.4

17-08-2015

§ 3.4

§ 5.3.1.5

§ 5.3.3

§ 5.3.17

§ 5.4.4.3

§ 5.5.3

Review comment:

 Comment 17

 Early disconnection function.

MA

0.1.5

17-08-2015

§ 5.1.1.3

§ 5.2.10

§ 5.3.1.3

§ 5.3.1.5

§ 5.3.3

§ 5.3.9

§ 5.3.16

U action key gen request TN

0.1.6

18-08-2015

§ 5.3.3

§ 5.3.15

§ 5.4.5.3

§ 5.4.5.4

§ 5.5.6.6

Comment 48 MP

0.1.7

19-08-2015

§ 5.2.2, 5.3.3,

5.3.15

§ 3.1.1.1,

4.1.1.2, 4.2.3,

5.2.9.5

§ 3.3, 3.4,

4.1.1.2

Editorial update

Implementation of RBC-RBC key

distribution

Deletion of ATO references

LA

FH

FH

0.1.8

25-08-2015

Fig.1, § 3.2,

4.3.1, 5.4.4,

5.3.17, 5.3.1.5,

5.3.3, 5.4.5, 5.2,

5.3.15, 4.1,

5.2.10, 5.4.1,

5.3 (for PEER-

NUM and REQ-

NUM)

Consolidation review in WG meeting WG

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 4/65

0.1.9

15-09-2015

As marked Internal review by SG SP

0.1.10

21-09-2015

§ 5.2.2.2,

5.3.4.1, 5.3.15.1

§ 4.2.3

See rev. marks

Update CMD_ADD_KEY after EUG

remark

Include validity period definition.

Final editorial review in WG meeting

WG

0.2.0

22-09-2015

 Release for second review WG

0.3.0

28-10-2015

§ 3.1.1.2/3, 3.2,

3.4.1.1, 4.2.1,

3.3, 3.4, 4.2.3.5,

4.2.5.5, 4.2.6,

5.2.4.3, 5.2.9,

5.3.1.7, 5.3.2.9,

5.3.3, 5.3.13,

5.3.15, 5.4.4.1

Fig. 1

§ 5.2.9, 5.3.16,

5.3.9, 5.3.1,

5.3.3, 5.3.15,

5.4.3, 5.5.1,

§ 5.3.1, 5.3.3,

5.3.10, 5.3.17,

5.4.3, 5.5, 5.2.7,

5.3.17, 5.6.1.8

§ 7

§ 3.2, 3.4, 4.3.1,

4.4.1.

§ 3.3, 3.4

Update according EUG comments

on V. 0.2.0

Update key generation request

Suppression of abort message

Interface to coordination layer

ENISA recommendation

Update terms and abbreviation lists

And corrections marked ‘Editorial’

WG

0.3.1

18-11-2015

3.2, 3.3, 3.4,

7.1.1.1, 7.2

Update as per 4 November 2015

EECT meeting.

PP

0.3.2

09-12-2015

§ 3.2, 3.4.1.1,

4.2.6.3, 5.3.1.4,

5.3.2.7, 5.3.3,

5.3.4.2, 5.3.9,

6.3.2.5, 7.1.1.2

and 7.4

Update as per consolidated review

sheet of the 08-12-2015 EECT

meeting

FH

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 5/65

Fig. 5 and 10

1.0.0

17-12-2015

- Baseline 3 2nd release version PP

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 6/65

2. TABLE OF CONTENTS

1. MODIFICATION HISTORY ... 2

2. TABLE OF CONTENTS .. 6

3. INTRODUCTION ... 9

3.1 Scope and Purpose ... 9

3.2 References ... 9

3.3 Acronyms and Abbreviations ... 11

3.4 Terms and Definitions ... 12

4. KEY MANAGEMENT PRINCIPLES AND CONCEPTS .. 14

4.1 Introduction ... 14

4.2 KMS reference architecture ... 15

4.2.1 Architecture overview ... 15

4.2.2 KMAC .. 16

4.2.3 KMAC validity period .. 16

4.2.4 KMC ... 16

4.2.5 KMAC entity ... 17

4.2.6 KMAC on-board entity .. 18

4.3 On-line interface overview ... 18

4.3.1 Security interface overview .. 18

4.3.2 Application protocol overview ... 20

4.3.3 Transport protocol overview ... 20

4.4 Random number generation .. 20

5. APPLICATION INTERFACE SPECIFICATIONS .. 21

5.1 Scope and purpose ... 21

5.2 Functional specification ... 21

5.2.1 Introduction .. 21

5.2.2 Add Keys ... 21

5.2.3 Delete Keys ... 22

5.2.4 Delete All Keys ... 22

5.2.5 Update Key Validity Periods ... 22

5.2.6 Update Key Entities.. 23

5.2.7 Check Key Database ... 23

5.2.8 Report Key Update Status.. 24

5.2.9 Request Key Operation .. 24

5.3 Message definition .. 25

5.3.1 Introduction .. 25

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 7/65

5.3.2 Format and check of messages ... 26

5.3.3 Message header .. 27

5.3.4 CMD_ADD_KEYS .. 29

5.3.5 CMD_DELETE_KEYS ... 30

5.3.6 CMD_DELETE_ALL_KEYS ... 30

5.3.7 CMD_UPDATE_KEY_VALIDITIES .. 30

5.3.8 CMD_UPDATE_KEY_ENTITIES ... 31

5.3.9 CMD_REQUEST_KEY_OPERATION .. 31

5.3.10 INQ_REQUEST_KEY_DB_CHECKSUM ... 32

5.3.11 NOTIF_KEY_UPDATE_STATUS ... 32

5.3.12 NOTIF_ACK_KEY_UPDATE_STATUS .. 33

5.3.13 NOTIF_SESSION_INIT .. 33

5.3.14 NOTIF_END_OF_UPDATE ... 33

5.3.15 NOTIF_RESPONSE .. 34

5.3.16 NOTIF_KEY_OPERATION_REQ_RCVD ... 35

5.3.17 NOTIF_KEY_DB_CHECKSUM .. 35

5.4 Data flow management ... 36

5.4.1 Connection establishment .. 36

5.4.2 Data transmission .. 36

5.4.3 Connection release .. 37

5.4.4 Error management ... 37

5.5 Application message scenarios ... 38

5.5.1 Introduction .. 38

5.5.2 KMC–KMAC entity key management scenario ... 39

5.5.3 KMC–KMAC entity: abnormal session release ... 40

5.5.4 KMC–KMC key management scenario... 41

5.5.5 Time-out supervision scenarios .. 43

5.5.6 Sequence and transaction error scenarios ... 44

5.6 Definition of the Key Database checksum algorithm .. 46

5.6.1 Algorithm properties ... 46

6. SECURITY INTERFACE SPECIFICATIONS .. 48

6.1 Scope and purpose ... 48

6.2 TLS interface specification .. 48

6.2.1 Role allocation ... 48

6.2.2 TLS common requirements .. 49

6.2.3 TLS requirements for TLS-PSK .. 49

6.2.4 TLS requirements for TLS-PKI ... 50

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 8/65

6.3 Certificate delivery interface .. 53

6.3.1 Client certificate delivery functions ... 53

6.3.2 Interface specification .. 54

6.3.3 Distinguished Name ... 60

6.4 Certificate status check interface ... 61

6.4.1 Certificate status check functions ... 61

6.4.2 Interface specification .. 61

7. TRANSPORT INTERFACE SPECIFICATION ... 64

7.1 Scope and purpose ... 64

7.2 Addressing .. 64

7.3 TCP specification .. 64

7.4 Functional interface with EuroRadio Co-ordinating function .. 64

ANNEX A. KEY DATABASE CHECKSUM COMPUTATION ... 65

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 9/65

3. INTRODUCTION

3.1 Scope and Purpose

3.1.1.1 ERTMS/ETCS applications use open transmission systems to transfer messages

between ERTMS/ETCS equipment.

3.1.1.2 Data transmission links implemented over open transmission systems are inherently

vulnerable as unauthorised access cannot be excluded. Therefore, it is important to

guarantee the integrity and authentication of messages sent over a non-trusted

transmission medium. ERTMS/ETCS applications use cryptographic techniques with

secret keys to achieve this.

3.1.1.3 ERTMS/ETCS specifications, such as [Subset-037] and [Subset-098], assume that the

cryptographic keys are already installed in the equipment. However, they do not

describe how and in which format these keys are transferred from the source (a Key

Management Centre) to the destination (a KMAC entity), and how they are installed.

3.1.1.4 This Subset specifies a Key Management System which covers the management of

on-line distribution of cryptographic keys between Key Management Centres and from

a Key Management Centre to KMAC entities.

3.1.1.5 The harmonisation of these interfaces is done in a policy-open way, allowing each

operator to implement a key management policy adequate for their specific security

needs; e.g. using different authentication keys for each pair of KMAC entities, or using

the same authentication key for a group of KMAC trackside entities.

3.1.1.6 This Subset is applicable for all KMAC entities whose communication is based on

cryptographic keys and therefore need to provide an interface for installation, update

and deletion of such keys.

3.1.1.7 This Subset is also applicable for Key Management Centres performing key

management tasks for KMAC entities and, if needed, for the generation and checking

of certificates to guarantee the authenticity of the communicating entities.

3.2 References

[ENISA] Algorithms, key size and parameters report 2014 November 2014

[ENISA_1] Study on cryptographic protocols November 2014

[EN-50159] Safety-related communication in transmission systems September 2010

[RFC-1320] The MD4 Message-Digest Algorithm April 1992

[RFC-2560] X.509 Internet Public Key Infrastructure Online Certificate Status

Protocol – OCSP

June 1999

[RFC-4055] Additional Algorithms and Identifiers for RSA Cryptography for

use in the Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile

June 2005

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 10/65

[RFC-4210] Internet X.509 Public Key Infrastructure Certificate Management

Protocol (CMP)

September 2005

[RFC-4211] Internet X.509 Public Key Infrastructure Certificate Request

Message Format (CRMF)

September 2005

[RFC-4279] Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) December 2005

[RFC-5246] The Transport Layer Security (TLS) Protocol. Version 1.2 August 2008

[RFC-5280] Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile

May 2008

[RFC-5487] Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and

AES Galois Counter Mode

March 2009

[RFC-6277] Online Certificate Status Protocol Algorithm Agility June 2011

[RFC-6818] Updates to the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile

January 2013

[RFC-6961] The Transport Layer Security (TLS) Multiple Certificate Status

Request Extension

June 2013

[EIRENE SRS] GSM-R System requirements specification

[Subset-023] ERTMS/ETCS; Glossary of Terms and Abbreviations

[Subset-037] ERTMS/ETCS; EuroRadio FIS

[Subset-038] ERTMS/ETCS; Off-line Key Management FIS

[Subset-098] ERTMS/ETCS; RBC-RBC Safe Communication Interface

[Subset-114] ERTMS/ETCS; KMC-ETCS Entity Off-line KM FIS

[X.500] ITU-T Recommendation: Information technology -

Open Systems Interconnection - The Directory:

Overview of concepts, models and services

October 2012

[X.501] ITU-T Recommendation: Information technology -

Open Systems Interconnection - The Directory: Models

October 2012

[X.520] ITU-T Recommendation: Information technology -

Open Systems Interconnection - The Directory:

Selected attribute types

October 2012

[X.690] ITU-T Recommendation: Information technology - ASN.1

encoding rules: Specification of Basic Encoding Rules (BER),

Canonical Encoding Rules (CER) and Distinguished Encoding

Rules (DER)

July 2002

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 11/65

3.3 Acronyms and Abbreviations

3.3.1.1 For general abbreviations refer to [Subset-023]. Additional abbreviations relevant for

key management and used in this document are specified here.

Abbreviation Definition

CA Certificate Authority

CMP Certificate Management Protocol

DB DataBase

DN Distinguished Name

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie Hellman

OCSP On-line Certificate Status Protocol

PSK Pre-Shared Key

RA Registration Authority

TLS Transport Layer Security

UTF-8 Unicode Transformation Format 8-bit

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 12/65

3.4 Terms and Definitions

3.4.1.1 For general terms refer to [Subset-023]. Additional terms relevant for key management

and used in this document are specified here.

Term Definition

Certificate

Authority (CA)

The entity responsible for issuing digital certificates to associate

public keys with user identities

Confidentiality Confidentiality, in the context of computer systems, allows only

authorised users to access protected data using specific

mechanisms to ensure confidentiality and safeguard data from

harmful intrusion

Cryptography The principles, means and methods for transformation of data in

order to ensure confidentiality, authenticity, non-repudiation and

integrity

ETCS entity ETCS EVC, RBC or RIU

Expanded

ETCS ID

The unique identifier of a KMS entity, consisting of its ETCS ID

type and its ETCS ID

Key database Contains the key entries in the KMS entities (note: the term

“database” is used here for any method of storing key entries)

Key entry An authentication key (KMAC) with the following related

information:

 identifier of the KMC that issued the key

 key serial number

 key validity period

 list of KMAC entities to which this key is allocated

Key serial number The number uniquely identifying one key within the set of keys

generated by a KMC

KMAC entity KMAC on-board entity or KMAC trackside entity

KMAC on-board

entity

ETCS on-board equipment

KMAC trackside

entity

RBC or RIU

KMS entity KMAC entity or KMC

Pseudorandom

number generator

A pseudorandom number generator is an algorithm for generating

a sequence of numbers whose properties approximate the

properties of sequences of random numbers.

Registration

Authority (RA)

The responsible entity in a PKI for accepting requests for digital

certificates and authenticating the entity making the request

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 13/65

Security

Infrastructure

The set of hardware, software, people, policies and procedures

needed to manage the registration of entities and distribution and

storage of digital certificates in a system

Transaction Message from a KMS entity requiring a response from the peer

entity and the response to this message from the peer entity

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 14/65

4. KEY MANAGEMENT PRINCIPLES AND CONCEPTS

4.1 Introduction

4.1.1.1 In order to secure the communication over a Category 3 [EN-50159] open transmission

system, the on-board and trackside equipment in the ERTMS/ETCS system exchange

information using the EuroRadio protocol [Subset-037].

4.1.1.2 When an ETCS equipment establishes a connection with another ETCS equipment

(e.g. between an EVC and an RBC), both must be able to authenticate the other

equipment and verify that it is an authorised entity. That way, the authenticity and

integrity of the information exchanged between them is also achieved.

4.1.1.3 The method for authenticating both communicating entities is based on an Identification

and Authentication (I&A) dialogue. In order to ensure protection, this dialogue shall

take place each time two entities start a new safe connection.

4.1.1.4 After a successful I&A dialogue, data is protected using a Message Authentication

Code (MAC). The calculation of this code is based on the existence of a shared secret

authentication key (KMAC) known by the entities communicating with each other.

4.1.1.5 The I&A dialogue and the MAC calculation procedures are fully specified in the Safe

Functional Module described in [Subset-037]. These procedures are based on

cryptographic techniques that use secret keys (KMAC). However, the procedures do

not provide any means to create, distribute or update these keys. Moreover, their

effectiveness relies on the key being secret, which can only be guaranteed using

secure key management functions.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 15/65

4.2 KMS reference architecture

4.2.1 Architecture overview

4.2.1.1 The following figure depicts the entities involved in the Key Management System.

Off-line

interface

On-line

interface

KMC

Key database

PKI - Security

infrastructure
Other on-line KMC

Other off-line KMC

KM domain

Subset-038

Subset-137 Subset-137

Off-line KM

On-line KM

Subset-137

Subset-137

Off-line

KMAC

interface

On-line

KMAC

interface

Subset-114

Subset-137

KMAC entities

Only applicable for TLS-PKI solution

Figure 1 – KMS Reference Architecture

4.2.1.2 A KM domain is defined as one KMC and all the KMAC entities using that KMC for their

key management; each KMAC entity referring to only one KMC for its key

management. A KMC could administrate only trackside or on-board entities or a mix of

both.

4.2.1.3 The Home KMC is the KMC that manages the key entries for a specific KMAC entity.

All KMAC entities belonging to the same KM domain have the same Home KMC.

4.2.1.4 The interfaces for off-line KMS are covered in [Subset-038] and [Subset-114].

4.2.1.5 The on-line interface between KMS entities allows a KMC to manage the authentication

keys (KMAC) with the KMAC entities in its domain and with other KMCs, ensuring

confidentiality, integrity and authenticity.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 16/65

4.2.1.6 The interface between the KMS entities and the security infrastructure allows any KMS

entity to exchange digital certificate related information with the security infrastructure.

The KMS entities communicate with the PKI for two main reasons:

a) to request or renew its own digital certificate;

b) to check if a given certificate issued by that PKI is (still) valid.

4.2.1.7 It’s important to remark that different kinds of networks can impose some restrictions

and/or performance limitations. For example, the network used between KMCs or

between a KMC and a KMAC trackside entity is likely to have high speed and low

latency. On the other hand, the network between a KMC and a KMAC on-board entity

is likely to have lower speed and bigger latency. Furthermore, it is only the KMAC on-

board entity that establishes a connection with a KMC, and an on-board entity might

not be able to contact the KMC (e.g. no GPRS coverage) for some period of time.

4.2.2 KMAC

4.2.2.1 KMAC is specified in § 4.2 of [Subset-114].

4.2.2.2 Each KMAC is uniquely identified by the key serial number and the expanded ETCS-ID

of the KMC that generated the key.

4.2.3 KMAC validity period

4.2.3.1 The validity period shall be defined by the beginning of validity date followed by the end

of validity date of the KMAC. The validity date shall be coded in HH DD MM YY format

using BCD and 24 Hours format. E.g. 15 01 01 05 would mean 1st January 2005 at

3:00 PM.

4.2.3.2 The beginning date is included in the validity period, while the end date is excluded.

Examples:

 beginning date “03 01 01 05” means that the key is valid from 3 AM, the 1st January

2005;

 end date “03 01 01 05” means that the key becomes invalid at 3 AM, the 1st January

2005.

4.2.3.3 UTC time shall be used for the interface.

4.2.3.4 The specific format 0xFFFFFFFF can be used for the end date only to specify infinite

validity period.

4.2.3.5 How to check the key validity period is specified in [Subset-037].

4.2.4 KMC

4.2.4.1 The KMC is responsible for the generation of the authentication keys (KMAC) needed

to establish a safe connection between a KMAC trackside entity belonging to its

domain and any KMAC on-board entity operating in its domain.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 17/65

4.2.4.2 The KMC issuing or updating a key entry is responsible to guarantee that the validity

period for this key entry does not overlap with any other validity period of any other key

entry applicable to any connection to which a current key entry is applicable.

4.2.4.3 When an authentication key is needed to establish a safe connection between RBCs

belonging to different KM domains, the KMC responsible for generating the key shall

be agreed between the operators.

4.2.4.4 The KMC shall uniquely identify all its generated keys with a key serial number.

4.2.4.5 Even if it is possible to allocate the same KMAC value to connections related to

different on-board equipment, the identifier of each authentication key related to

different on-board equipment connections shall still be unique.

4.2.4.6 Even if it is possible to allocate the same KMAC value for more than one RBC-RBC

connection, the identifier shall be unique for each RBC-RBC connection.

4.2.4.7 The KMC is also responsible for installing, updating, and deleting key entries (KMAC

and related information) in all KMAC entities belonging to its domain.

4.2.4.8 The KMC shall be able to process requests for generation, installation, update and

deletion of key entries from another KMC.

4.2.4.9 The KMC shall be able to request for generation, installation, update and deletion of

key entries to another KMC.

4.2.4.10 The KMC shall report key status update to a KMC having requested generation,

update, installation or deletion of key entries.

4.2.4.11 The KMC shall only request another KMC to update or delete keys which the

requesting KMC has issued.

4.2.4.12 If requested by another KMC to install, update or delete keys, the KMC shall check that

these keys were issued by that other KMC.

4.2.4.13 The KMC shall be able to check the key database in KMAC entities belonging to its KM

domain.

4.2.4.14 It is the responsibility of the KMC to recover from any KM related degraded cases

occurring in a KMAC entity. This has to be done according to the KM domain’s own

rules, e.g. by deleting and reinstalling all keys in this KMAC entity.

4.2.5 KMAC entity

4.2.5.1 A KMAC entity shall refer to only one Home KMC.

4.2.5.2 KMAC entities shall use only their Home KMC for key management purposes.

4.2.5.3 The KMAC entity shall not modify or delete any key entry installed by the Home KMC

unless ordered to do that by the Home KMC.

4.2.5.4 The KMAC entity shall guarantee that key management transactions do not affect any

already established connections for train supervision.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 18/65

4.2.5.5 An updated authentication key will not be applied to an active connection. The key will

take effect the next time the connection is established.

4.2.5.5.1 Note: For long-lasting connections like the RBC-RBC interface, there may be a need

for an operational procedure to re-initiate the connection.

4.2.6 KMAC on-board entity

4.2.6.1 The KMAC on-board entities shall contact their Home KMC on a regular basis in order

to check if any key update is needed.

4.2.6.2 The KMAC on-board entity shall contact its Home KMC if any of the following

conditions is fulfilled:

a) The ERTMS/ETCS on-board equipment is switched on and the start-up tests, if

any, are completed successfully.

b) The time elapsed since the last successfully completed session with the Home

KMC is longer than a predefined time period configured in the on-board. This time

period value is defined by the Home KMC and shall be between 1 hour and 1000

hours, with the default value being 10 hours.

c) The KMAC on-board entity maintenance staff requests a key update.

d) The KMAC on-board entity detects an invalid or corrupted KMAC key.

4.2.6.3 If the on-board entity is not able to complete successfully the connection with its Home

KMC, the KMAC on-board entity shall retry to establish the session with its Home KMC

every 10 minutes.

4.3 On-line interface overview

4.3.1 Security interface overview

4.3.1.1 In order to achieve confidentiality, authenticity and integrity of the distributed

cryptographic material (KMAC), the TLS protocol has been chosen.

4.3.1.2 The authentication shall be guaranteed either by using certificates from a Public Key

Infrastructure (PKI) or by using secret pre-shared keys (PSK).

4.3.1.3 The TLS protocol using pre-shared keys for authentication is referred to as TLS-PSK

throughout the rest of the document.

4.3.1.4 The TLS protocol using a Public Key Infrastructure for authentication is referred to as

TLS-PKI throughout the rest of the document.

4.3.1.4.1 Note: Even if this standard specifies the use of one of the strongest cipher suites for

TLS, this cipher suite is only recommended for legacy use due to the lack of security

proof (see table 2.1 of [ENISA]) in the ENISA study on cryptographic protocol (see

[ENISA_1]). Using TLS and PKI, there is no alternative cipher suite available yet.

4.3.1.5 Every KMS entity shall support TLS-PKI.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 19/65

4.3.1.6 A KMS entity may optionally support TLS-PSK as an alternative to TLS-PKI, but only

for use within a KM domain and not between two KMC.

4.3.1.6.1 Note: TLS-PSK may be more convenient from a key management point of view in small

KM domains. In such domains it may be easier to use pre-shared keys than to set up a

public key infrastructure. TLS-PSK may also be used as fall-back in case TLS-PKI is

not available, e.g. due to a compromised CA.

4.3.1.7 TLS-PSK relies on the secrecy of a pre-shared key to authenticate the peer entity. The

distribution and installation of secret pre-shared keys must be supported by operational

procedures to guarantee the secrecy and authenticity. The definition of these

operational procedures is out of scope of this document.

4.3.1.8 TLS-PKI relies on digital certificates managed and distributed by an external Certificate

Authority (CA) to authenticate the peer entity. The certificate of the root CA must be

installed in all peer entities using some operational procedures to guarantee its

authenticity. The definition of these operational procedures is out of scope of this

document.

4.3.1.9 The following figure depicts the general PKI certificate hierarchy.

 Root

CA / RA

Intermediate

CA / RA

Issuing

CA / RA

Issuing

CA / RA
Client

Certificates

Client
Certificates

Client
Certificates

Issuing

CA / RA

Figure 2 – PKI certificate hierarchy

4.3.1.10 In the figure above, CA is a Certificate Authority responsible for issuing, renewing and

revoking digital certificates. A digital certificate contains, among others, a public key

and information related to the key, its owner, its validity period and its allowed use (e.g.

encryption and/or authentication).

4.3.1.11 In the simplest scenario, certificates are issued by a Certificate Authority. More

complex scenarios see the presence of a Registration Authority (RA). When a new

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 20/65

entity wants to obtain a client certificate, it issues a request to the RA which then tries

to authenticate the requester. If authenticated, the RA forwards the request to the CA,

which issues the digital certificate. The RA can be a part of a CA as well as a separate

entity.

4.3.1.12 CAs can be organized in a hierarchical tree structure with CA certificates issued by a

higher-level CA. This tree structure has a single root node, called “root CA” and all

clients must know the root CA certificate.

4.3.1.13 Digital certificates are distributed using CMP.

4.3.1.14 The digital certificate is validated by using OCSP or by using the “Multiple Certificate

Status Request” extension of the TLS protocol.

4.3.2 Application protocol overview

4.3.2.1 The application protocol allows distribution, update and deletion of key entries between

two KMCs and from KMC to KMAC entities.

4.3.2.2 The application protocol also provides means to request key operations, to perform a

key database consistency check and to inform about the key distribution status.

4.3.3 Transport protocol overview

4.3.3.1 The TLS protocol is a layer on top of the TCP/IP protocol stack. Therefore, KMS

entities shall be able to establish or accept TCP connections from peer entities in order

to implement the on-line interfaces seen in Figure 1.

4.3.3.2 KMS entities shall also be able to establish TCP connections with the PKI because the

distribution and validation of digital certificates rely on TCP/IP.

4.3.3.3 To avoid impact on the ERTMS/ETCS services, the KMS functions shall use an APN

separate from the one used for ETCS operations.

4.4 Random number generation

4.4.1.1 The implementation of key generation and secure communication protocols requires

the use of cryptographically secure random numbers. A cryptographically secure

random or pseudo-random number generator shall be used when:

a. generating the public/private key pair (see § 6.3.1.4.3);

b. generating the pre-shared key used if the TLS-PSK solution is used (see § 6.2.3.1);

c. generating the KMAC (see § 5.2.2.1);

d. performing the TLS handshake procedure (see § 6.2.4).

4.4.1.2 The random number generator, its use and implementation, shall fulfil the requirements

stated in [ENISA] § 6.2.

4.4.1.2.1 Note: In the case of using a pseudorandom number generator, special attention has to

be paid to the initialisation process and to the secrecy of the pseudorandom number

generator seed.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 21/65

5. APPLICATION INTERFACE SPECIFICATIONS

5.1 Scope and purpose

5.1.1.1 This chapter specifies the on-line KMS application interface and consists of:

a) Functional specification

b) Message specification

c) Data flow management

5.1.1.2 In this chapter, the term “Key” refers only to the authentication key, i.e. the KMAC.

5.1.1.3 The following functions are specified for the on-line KMS interface:

a) Add Keys

b) Delete Keys

c) Delete All Keys

d) Update Key Validities

e) Update Key Entities

f) Check Key Database

g) Report Key Update Status

h) Request Key Operation

5.2 Functional specification

5.2.1 Introduction

5.2.1.1 The following sections specify the functions needed for on-line key management

between two KMCs or between the KMC and KMAC entities.

5.2.1.2 Additional functions could exist locally but shall not interfere with this Subset. The KM

domain administrator is responsible for common understanding of any local functions.

5.2.1.3 All functions specified in § 5.2 are mandatory.

5.2.1.4 Each function specified in § 5.2 constitutes a complete transaction, i.e. a request from

an entity and the response to this request.

5.2.2 Add Keys

5.2.2.1 This function is used by the KMC either to install one or more authentication keys

(KMAC) into a KMAC entity or to exchange keys with another KMC.

5.2.2.2 The function “Add Keys” shall define:

a) the authentication key (KMAC) to be installed;

b) the recipient KMAC entity;

c) the list of KMAC entities associated with this key;

d) the validity period associated with this key.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 22/65

5.2.2.3 To install one or several key entries in a KMS entity, the KMC shall send an “Add Keys”

command message including one request per key entry that shall be installed.

5.2.2.4 When a KMS entity receives an “Add Keys” command message that passes the header

and message structure verification, it shall respond with a notification message with

one answer for each key entry included in the command message. Each reply shall

indicate the result of the installation of the corresponding key entry.

5.2.3 Delete Keys

5.2.3.1 This function is used by the KMC for:

a) deleting one or more key entries in a KMAC entity;

b) deleting one or more key entries in another KMC.

5.2.3.2 To delete one or several key entries in a KMS entity, the KMC shall send a “Delete

Keys” command message including one request per key entry that shall be deleted.

5.2.3.3 When a KMS entity receives a “Delete Keys” command message that passes the

header and message structure verification, it shall respond with a notification message

with one answer for each key entry included in the command message. Each reply

shall indicate the result of the deletion of the corresponding key entry.

5.2.3.4 The deletion shall be performed in such a way that the deleted keys cannot be

recovered.

5.2.4 Delete All Keys

5.2.4.1 This function is used by the KMC for deletion of all key entries stored in a KMAC entity.

5.2.4.2 To delete all key entries in a KMAC entity, the KMC shall send a “Delete All Keys”

command message.

5.2.4.3 When a KMAC entity receives a “Delete All Keys” command message that passes the

header and message structure verification, it shall respond with a notification message

indicating the result of the deletion.

5.2.4.4 The deletion shall be performed in such a way that the deleted keys cannot be

recovered.

5.2.5 Update Key Validity Periods

5.2.5.1 This function is used by the KMC for:

a) updating the validity period of already distributed keys in a KMAC entity;

b) updating the validity period of already distributed keys in another KMC.

5.2.5.2 To update the validity period for one or several key entries in a KMS entity, the KMC

shall send an “Update Key Validity Periods” command message including one request

per key entry that shall be updated.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 23/65

5.2.5.3 When a KMS entity receives an “Update Key Validity Periods” command message that

passes the header and message structure verification, it shall respond with a

notification message with one reply for each requested update of key validity period

requested by the command message. Each reply shall indicate the result of the update

of the key validity period of the corresponding key entry.

5.2.5.4 The validity period updated by the “Update Key Validity Periods” command message

shall replace the previous validity period associated with the corresponding key entry.

5.2.6 Update Key Entities

5.2.6.1 This function is used by the KMC for:

a) updating the list of KMAC entities linked to already installed keys in a KMAC entity;

b) updating the list of KMAC entities linked to already distributed keys in another KMC.

5.2.6.2 To update the list of KMAC entities for one or several key entries in a KMS entity, the

KMC shall send an “Update Key Entities” command including one request per key entry

that shall be updated.

5.2.6.3 When a KMS entity receives an “Update Key Entities” command message that passes

the header and message structure verification, it shall respond with a notification

message with one reply for each update of key entities requested by the command

message. Each reply shall indicate the result of the update of the key entities of the

corresponding key entry.

5.2.6.4 The list of KMAC entities updated by the “Update Key Entities” command message

shall replace any previously distributed list of KMAC entities associated with the

corresponding key entry.

5.2.7 Check Key Database

5.2.7.1 This function is used by the KMC for requesting the checksum computed on the key

database of a KMAC entity. The returned checksum is used by the KMC to check

status of the KMAC entity key database.

5.2.7.2 The key database checksum shall be calculated as stated in § 5.6.

5.2.7.3 To initiate a check of the key database status in a KMAC entity, the KMC shall send a

“Request Key Database Checksum” inquiry message.

5.2.7.4 When a KMAC entity receives a “Request Key Database Checksum” message from its

Home KMC, it shall calculate a checksum on its key database and respond with a

notification message reporting the computed checksum.

5.2.7.5 When the KMC receives the notification message including the checksum, it uses this

value to check the status of KMAC entity key database.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 24/65

5.2.8 Report Key Update Status

5.2.8.1 This function is used by the KMC to report a status change of a key entry in a KMAC

entity in its KM domain to the KMC that issued the key. The key status could have

changed either due to a request from the KMC that issued the key or due to events in

the KMAC entity’s KM domain.

5.2.8.2 When a KMC has successfully installed a key issued by another KMC, it shall report

this to the issuing KMC.

5.2.8.3 When a KMC has successfully updated the validity period or the list of KMAC entities

for a key issued by another KMC, it shall report this to the issuing KMC, unless there is

a pending update for this key.

5.2.8.4 When a KMC has successfully deleted a key issued by another KMC, in the relevant

KMAC entity and in its own key database, it shall report this to the issuing KMC. If a

key was deleted without ever having been installed in a KMAC entity, the KMC shall

respond after deleting the key entry from its own key database.

5.2.8.5 When a KMC receives a “Report Key Update Status” notification message from

another KMC, it shall update the status of the key entry in its database and reply that

the reported status of the key has been taken into account.

5.2.8.6 Management of key update degraded cases is in the scope of the KMAC entity’s Home

KMC, and failure to install, delete or update a key entry in a KMAC entity is not

reported to the issuing KMC.

5.2.9 Request Key Operation

5.2.9.1 This function is used by the KMC for requesting an issuing KMC to generate, update or

delete key entries for a KMAC entity belonging to the requesting KM domain.

5.2.9.2 The request shall specify one of the following reasons for the key operation:

a) New train operating in the issuing KM domain;

b) Modification of the area of operation in the issuing KM domain;

c) Reduction of scheduled permission in the issuing KM domain (i.e. the date of end of

operation of the KMAC entity in the issuing KM domain is set earlier than the date

of end of validity of the KMAC distributed to this KMAC entity);

d) Approaching the end of validity period for some of the issued keys.

5.2.9.3 To request another KMC to perform a key operation, the KMC shall send a “Request

Key Operation” message including the identity of the KMAC entity for which the key

operation is requested.

5.2.9.4 When an issuing KMC receives a “Request Key Operation” command message that

passes the header and message structure verification, it shall respond with a

notification message indicating that the key operation request has been received and

including the maximum time required for responding to the request.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 25/65

5.2.9.5 The issuing KMC can respond to a request for key operation by adding, updating or

deleting a key entry.

5.2.9.5.1 Note: The requesting KMC should not make any assumptions about how the issuing

KMC will respond to the request for key operation. E.g.: a reduction of scheduled

permission to the current date for a decommissioned train or for a train no more

operating in the issuing KM domain could be responded to with a key deletion request

or with a key validity period update request.

5.2.9.6 In case the KMC is not able or allowed to perform the key operation requested within

the time indicated in the response to the “Request Key Operation”, this is not reported

to the requesting KMC. If this time elapses, the situation needs to be handled by some

operational procedure. The definition of such operational procedures is out of scope of

this document.

5.3 Message definition

5.3.1 Introduction

5.3.1.1 This section defines the structure of the messages exchanged between KMS entities in

order to implement the functions listed in section 5.2.

5.3.1.2 Messages are divided into Command, Inquiry and Notification:

a) Command messages require some modification of the key database in the

receiving KMS entity

b) Inquiry message requests only a response from the receiving KMS entity without

any modification of the key database

c) Notification messages are used as:

 reply to a message

 notification of TLS session establishment

 notification of update status

 notification of end of update

5.3.1.3 The following table lists the Command messages:

Message - Command Message flow direction

CMD_ADD_KEYS KMC → KMS entity

CMD_DELETE_KEYS KMC → KMS entity

CMD_DELETE_ALL_KEYS KMC → KMAC entity

CMD_UPDATE_KEY_VALIDITIES KMC → KMS entity

CMD_UPDATE_KEY_ENTITIES KMC → KMS entity

CMD_REQUEST_KEY_OPERATION KMC → KMC

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 26/65

5.3.1.4 The following table lists the Inquiry message:

Message – Inquiry Message flow direction

INQ_REQUEST_KEY_DB_CHECKSUM KMC → KMAC entity

5.3.1.5 The following table lists the Notification messages:

Message – Notification Message flow direction

NOTIF_KEY_UPDATE_STATUS KMC → KMC

NOTIF_ACK_KEY_UPDATE_STATUS KMC → KMC

NOTIF_SESSION_INIT
KMC → KMS entity

KMS entity → KMC

NOTIF_END_OF_UPDATE KMC → KMS entity

NOTIF_RESPONSE KMS entity → KMC

NOTIF_KEY_OPERATION_REQ_RCVD KMC → KMC

NOTIF_KEY_DB_CHECKSUM KMAC entity → KMC

5.3.1.6 Command messages can carry several requests of the same type, but it is not possible

to mix different types of requests in the same Command message.

5.3.1.7 A Notification message replying to a Command message shall include either one result

per request, in the same order as the requests, in the Command message to which it

replies or only the response field, indicating the failure in the execution of the

Command message.

5.3.2 Format and check of messages

5.3.2.1 All messages are specified in binary format and all values are serialized in network

byte order (Big Endian).

5.3.2.2 All messages consist of a message header which is optionally followed by a message

body. The general message structure is depicted below:

Message Header Message Body (optional)

Figure 3 – General message structure

5.3.2.3 The common message header specifies the type of information in the body (if any).

5.3.2.4 The message size shall not exceed 5000 bytes.

5.3.2.5 In the tables, the following conventions apply:

a) Description provides a short explanation of the message/structure.

b) Field provides the reference name for the information contained in the message.

c) Size of a field is provided in bytes.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 27/65

d) Values shall be coded as unsigned integers.

e) Field description provides a short explanation of the field.

f) Range of allowed values can be specified as a closed interval from X to Y as

follows: [X..Y].

g) An empty Value field means that the full range is available.

h) A repeated field is specified as F[N], which means that there are “N” occurrences

of the single field “F” in the message.

5.3.2.6 When a KMS entity receives a message, it shall verify the header and message

structure. If there is any error in the header or message structure it shall discard the

message and respond with a notification message (see NOTIF_RESPONSE) reporting

the error which has occurred (see RESPONSE field).

5.3.2.7 Verification of the message header and structure shall include the following:

a) check that the header of the message contains the unique identifier of the receiving

entity (see Receiver ID field);

b) check that the header of the message contains the unique identifier of the entity

authenticated for the current connection (see the Sender ID field);

c) check that the value of each field is within the allowed value range;

d) check that the Message Length field in the header corresponds to the sum of the

parts of which the message consists, such that, when parsing the message, no data

would be read outside the message and no data would be left unparsed at the end

of the message;

e) check that the request corresponds to a supported request (see Message type field);

f) check that the header of the message contains a supported version of the interface.

5.3.2.8 For every message exchanged on the on-line KMS interface, each key shall be

identified unambiguously (see K-IDENTIFIER field).

5.3.2.9 In the following tables, the term “undefined” means that the value can be used for local

implementations but this may lead to compatibility issues. The term “reserved” means

that the values are reserved for future use within the scope of this document.

5.3.3 Message header

Description Message Header used in all messages.

Field Size Value Field description

Message Length 4 [20..5000] Total length of this message including header and body

in bytes.

Interface Version 1 2 Version of the interface.

Note: only version “2” is currently available.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 28/65

Receiver ID 4 ETCS-ID-EXP The unique identifier of the intended recipient of the

message.

Sender ID 4 ETCS-ID-EXP The unique identifier of the sender of the message.

Transaction

Number

4 [1..232-1] The Transaction Number identifies a transaction with a

particular set of operations to be performed. The

Transaction Number of the message being responded to

shall be used as Transaction Number in the response.

0 Transaction Number to be used in messages that do not

require a reply, are not a reply to a request or are a

notification response reporting a transaction or sequence

number mismatch:

 NOTIF_SESSION_INIT

 NOTIF_END_OF_UPDATE

 NOTIF_RESPONSE (Transaction Number mismatch

or Sequence Number mismatch)

Sequence

Number

2 [0..65535] The Sequence Number allows checking messages for

sequence errors, i.e. lost or repeated messages. The

sequence number shall wrap around to 0 after 65535.

Message type 1 0 CMD_ADD_KEYS

1 CMD_DELETE_KEYS

2 CMD_DELETE_ALL_KEYS

3 CMD_UPDATE_KEY_VALIDITIES

4 CMD_UPDATE_KEY_ENTITIES

5 CMD_REQUEST_KEY_OPERATION

6 INQ_REQUEST_KEY_DB_CHECKSUM

7 NOTIF_KEY_UPDATE_STATUS

8 NOTIF_ACK_KEY_UPDATE_STATUS

9 NOTIF_SESSION_INIT

10 NOTIF_END_OF_UPDATE

11 NOTIF_RESPONSE

12 NOTIF_KEY_OPERATION_REQ_RCVD

13 NOTIF_KEY_DB_CHECKSUM

[14..200] Reserved

[201..255] Undefined

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 29/65

5.3.3.1 ETCS-ID-EXP consists of the following fields:

Description The unique identifier for a KMS entity.

Field Size Value Field description

ETCS-ID type 1 ETCS-ID type as specified in [Subset-037]

ETCS-ID 3 Entity ETCS-ID as specified in [Subset-037]

5.3.4 CMD_ADD_KEYS

Description Message for adding key entries to the receiver’s key database.

Field Size Value Field description

REQ-NUM 2 [1..100] The number of K-STRUCT structures that follow.

K-STRUCT

[REQ-NUM]

* *The size of this field depends on:

 Number of key entries

 Number of KMAC entities per key entry

5.3.4.1 K-STRUCT consists of the following fields:

Description Structure to describe a key entry.

Field Size Value Field description

K-LENGTH 1 24 The key length in bytes (KMAC)

K-IDENTIFIER 8 Structure that uniquely identifies a key

ETCS-ID-EXP 4 The expanded ETCS-ID of the recipient KMAC entity

KMAC K-LENGTH The authentication key

PEER-NUM 2 [1..1000] The number of peer entities following this field.

At least one peer entity shall be specified in K-STRUCT.

ETCS-ID-EXP

[PEER-NUM]

4*PEER-

NUM

 List of KMAC entities linked to this key.

VALID-PERIOD 8 Validity period as specified in § 4.2.3

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 30/65

5.3.4.2 K-IDENTIFIER consists of the following fields:

Description Structure to uniquely identify a KMAC.

Field Size Value Field description

ETCS-ID-EXP 4 The identity of the KMC that issued the key.

SNUM 4 The serial number of the key.

5.3.5 CMD_DELETE_KEYS

Description Message for deleting key entries from the key database in the receiving KMS

entity.

Field Size Value Field description

REQ-NUM 2 [1..500] The number of K-IDENTIFIER structures that follow.

K-IDENTIFIER

[REQ-NUM]

8*REQ-

NUM

 List of K-IDENTIFIER

5.3.6 CMD_DELETE_ALL_KEYS

Description Message for deleting all key entries stored in the receiving KMAC entity.

This message consists only of the message header.

5.3.7 CMD_UPDATE_KEY_VALIDITIES

Description Message for updating the validity periods of a set of key entries.

Field Size Value Field description

REQ-NUM 2 [1..250] The number of K-VALIDITY structures that follow

K-VALIDITY

[REQ-NUM]

16*REQ-

NUM

 List of K-VALIDITY structures

5.3.7.1 K-VALIDITY consists of the following fields:

Description Structure to update the validity period of a key entry.

Field Size Value Field description

K-IDENTIFIER 8 Structure that uniquely identifies a key

VALID-PERIOD 8 Validity period as specified in § 4.2.3

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 31/65

5.3.8 CMD_UPDATE_KEY_ENTITIES

Description Message for updating the KMAC entities of a set of key entries.

Field Size Value Field description

REQ-NUM 2 [1..250] The number of K-ENTITIES structures that follow

K-ENTITIES

[REQ-NUM]

REQ-NUM *

(10 + 4 *

PEER-NUM)

 List of K-ENTITIES structures

5.3.8.1 K-ENTITIES consists of the following fields:

Description Structure describing the KMAC entities to which a key shall be linked.

Field Size Value Field description

K-IDENTIFIER 8 Structure that uniquely identifies a key entry

PEER-NUM 2 [1..1000] Number of KMAC entities following this field

ETCS-ID-EXP

[PEER-NUM]

4*PEER-

NUM

 List of KMAC entities linked to this key

5.3.9 CMD_REQUEST_KEY_OPERATION

Description Message for requesting the issuing KMC to perform a key operation for a KMAC

entity.

Field Size Value Field description

ETCS-ID-EXP 4 KMAC entity for which a key operation is requested.

REASON 1 0 New train operating in the issuing KM domain

1 Modification of the area of operation in the issuing KM

domain

2 Reduction of scheduled permission in the issuing KM

domain

3 Approaching the end of validity period for some of the

issued keys

[4..200] Reserved

[201..255] Undefined

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 32/65

VALID-PERIOD 8 Field to be included only if REASON = 2

Validity period as specified in § 4.2.3.

Beginning date of validity period shall be equal to the

beginning of the validity period of the key for which a

request for reduction of scheduled permission is issued.

End date of validity period shall be set to the date

requested for reduction of scheduled permission.

TEXT-LENGTH 2 [0..1000] Length of the optional text

TEXT TEXT-

LENGTH

 Optional text to provide some extra information for a key

operation request (if TEXT_LENGTH > 0).

Text is encoded using UTF-8.

5.3.10 INQ_REQUEST_KEY_DB_CHECKSUM

Description Message for requesting a KMAC entity to compute the checksum over its key

database and report the result to the KMC.

This message consists only of the message header.

5.3.11 NOTIF_KEY_UPDATE_STATUS

Description Message for reporting status for a key to the issuing KMC.

Field Size Value Field description

K-IDENTIFIER 8 Identifier of the key for which the status is reported.

K-STATUS 1 1 The key is installed

2 The key is updated

3 The key is deleted

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 33/65

5.3.12 NOTIF_ACK_KEY_UPDATE_STATUS

Description Message for acknowledging the reception of a NOTIF_KEY_UPDATE_STATUS

message for a specific key.

This message consists only of the message header.

5.3.13 NOTIF_SESSION_INIT

Description Message for initialising a new session.

This message informs the peer entity about the initial sequence number, the list

of supported interface versions and the application time-out value.

The sequence number in the header shall be used as the initial sequence

number.

The header of this message shall always conform to version “2” for backward

compatibility.

Field Size Value Field description

N-VERSION 1 1 Number of versions of the interface supported by the

entity.

Only one version is supported in the current release.

INTERFACE-

VERSION

[N-VERSION]

N-VERSION 2 List of supported versions.

Only version “2” of the on-line interface shall be

supported by all entities on the current release of the

interface.

APP-TIME-OUT 1 [5..254] Application time-out in seconds.

255 Application time-out defined by the peer entity.

5.3.14 NOTIF_END_OF_UPDATE

Description Message for indicating that all requested updates have been transferred. It is

sent after all updates have been acknowledged and no further command has to

be sent to the KMS entity.

This message consists only of the message header.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 34/65

5.3.15 NOTIF_RESPONSE

Description Message for reporting the result of an Inquiry or Command message to the

originator of that message. The first field indicates the result or an error of some

kind, optionally followed by an individual result for each request.

Field Size Value Field description

RESPONSE 1 0 If the Command message responded to contains a list of

requests (i.e. contains “REQ-NUM” field), “0” means that the

message verification was successful. Confirmation of each

request follows in the list of NOTIFICATION_STRUCT.

If the response is to an Inquiry message or to a Command

message that does not contain a list of requests, “0” means

that the message verification was successful and the request

has been successfully processed.

1 Request not supported (see § 5.3.2.7 e).

2 Message length error (see § 5.3.2.7 d).

3 Sender ID included in the request doesn’t match the ETCS-ID-

EXP of the expected peer KMS entity (see § 5.3.2.7 b).

4 Receiver ID included in the request doesn’t match the KMS

entity’s ETCS-ID-EXP (see § 5.3.2.7 a).

5 Unsupported interface version (see § 5.3.2.7 f).

6 Unrecoverable key database.

This value is used by the KMAC entity to report the need for a

complete key database reinstallation.

7 Failure in processing the request.

This value shall only be used for reporting errors in the

processing of messages that do not include a list of requests:

CMD_DELETE_ALL_KEYS;

CMD_REQUEST_KEY_OPERATION;

INQ_CHECK_KEY_DB.

8 Checksum mismatch (see § 5.2.7.4).

9 Sequence number mismatch (see § 5.4.4.4).

10 Transaction number mismatch (see § 5.4.4.5).

11 Format error (see § 5.3.2.7 c).

[12..254] Reserved.

255 Other error.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 35/65

REQ-NUM 2 [0..500] The number of NOTIFICATION_STRUCT that follows.

This field shall be “0” if the RESPONSE field value is different

from “0”.

NOTIFICATION_

STRUCT [REQ-

NUM]

REQ-

NUM

 List of NOTIFICATION_STRUCT structures

5.3.15.1 NOTIFICATION_STRUCT consists of the following fields:

Description The result of a single command for a key entry.

Field Size Value Field description

RESULT 1 0 Request successfully processed

1 Unknown key: key not found in the KMS entity database

2 Maximum number of keys exceeded in the KMS entity database

3 Request to install a key already installed in the KMAC entity

database. The installation request will not be processed

4 Key corrupted

5 Recipient expanded ETCS-ID mismatch

[6..254] Reserved

255 Other error

5.3.16 NOTIF_KEY_OPERATION_REQ_RCVD

Description Message for reporting that the command CMD_REQUEST_KEY_OPERATION

has been received. This message also indicates the maximum time required to

respond to the key operation request.

Field Size Value Field description

MAXTIME 2 Maximum time (in hours) required to respond to the key

operation request

5.3.17 NOTIF_KEY_DB_CHECKSUM

Description Message for reporting the KMAC entity checksum value.

Field Size Value Field description

CHECKSUM 20 The checksum of the KMAC entity’s key database

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 36/65

5.4 Data flow management

5.4.1 Connection establishment

5.4.1.1 The KMC is responsible for establishing the connection with KMAC trackside entities.

5.4.1.2 The KMAC on-board entity is responsible for establishing the connection with the KMC.

5.4.1.3 The KMC requesting a key generation, installation, deletion or update, or reporting a

key status change is responsible for establishing the connection with the peer KMC.

5.4.1.4 Connection between KMS entities shall be established only to send Inquiry, Command

or key update status Notification messages.

5.4.1.5 As soon as a TLS connection has been established between two KMS entities, both

entities shall send a NOTIF_SESSION_INIT message to the peer entity. The

connection is considered as established at application level at the reception of the

NOTIF_SESSION_INIT message from the peer entity.

5.4.1.6 The NOTIF_SESSION_INIT message shall include the initial sequence number used

for sequence management, the list of supported interface versions and the application

time-out value. This message shall always use the header compliant with the version

“2” of the interface.

5.4.1.7 The highest interface version supported by both entities shall then be used during the

rest of the session. The “Interface Version” in the header of the following messages

shall be set to the agreed interface version.

5.4.1.8 The KMS entity shall not send any other message than NOTIF_SESSION_INIT until it

has received a NOTIF_SESSION_INIT message from the other KMS entity.

5.4.1.9 After having exchanged the NOTIF_INIT message between both entities, if no common

version of the interface is supported, both entities shall release the TLS connection.

5.4.1.10 The application time-out value shall be defined and distributed by the KMC initiating the

connection for the KMC-KMC connection and by the KMC in case of a KMC-KMAC

entity connection. The other entity shall send the specific application time-out value

“Application time-out defined by the peer entity”.

5.4.1.11 Once the connection is established at application level, each entity shall start to

supervise the application time-out. The timer is restarted at each reception of an

application message from the peer KMS entity.

5.4.1.12 NOTIF_SESSION_INIT shall not be repeated.

5.4.2 Data transmission

5.4.2.1 Once the connection between a KMC and a KMAC entity has been established, the

KMC shall only send Command, Inquiry or end of update Notification messages to the

KMAC entity.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 37/65

5.4.2.2 In a KMC-KMC connection, only the KMC having established the connection shall

request a key generation, installation, deletion or update, or report a key status change.

5.4.2.3 After sending a message for which a reply is expected, the KMC shall not send any

other message until it has received a reply with the same Transaction Number as in the

message it sent.

5.4.2.4 The KMS entity replying to a received message, identified by a Transaction Number,

shall use the same Transaction Number as in the message it replies to.

5.4.2.5 The Transaction Number in two consecutive transactions shall be different.

5.4.2.6 The KMS entities shall send messages in sequence and increment the Sequence

Number by one each time a new message is sent.

5.4.2.6.1 Note: The Sequence Number may start at any valid value and does not have to be

reset between sessions.

5.4.3 Connection release

5.4.3.1 Once the KMC considers all transactions completed, the KMC shall send a

NOTIF_END_OF_UPDATE message and release the connection.

5.4.3.2 In KMC-KMC connections, the KMC requesting or reporting a key update or requesting

key operation is responsible for releasing the connection.

5.4.3.3 If the connection between a KMAC entity and a KMC is released before the KMC has

issued the NOTIF_END_OF_UPDATE message, any transaction that has not been

acknowledged before a session is terminated may not have been executed.

5.4.3.4 When the connection is re-established with the KMAC entity, the KMC can check the

status of the KMAC DB by sending an INQ_CHECK_KEY_DB message and by using

the returned checksum to check whether a not acknowledged, transaction has been

processed or not.

5.4.4 Error management

5.4.4.1 If the NOTIF_SESSION_INIT message has not been received within 15 seconds after

the TLS connection has been established between two KMS entities, this connection

shall be released by the KMS entity detecting the time-out.

5.4.4.2 If the application time-out elapses for a connection established at application level, this

connection shall be released by the KMS entity detecting the time-out.

5.4.4.3 At message reception, the KMS entity shall check the Sequence Number before the

Transaction Number.

5.4.4.4 If the sequence number of a received message is not consecutive to the previous one

received, the KMS entity that detects this shall send NOTIF_RESPONSE message

reporting Sequence Number mismatch and then release the connection.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 38/65

5.4.4.5 The KMS entity shall check the Transaction Number in messages received as reply to

a message it sent. If this Transaction Number does not match the number in the

message it sent, then the KMS entity shall send a NOTIF_RESPONSE message

reporting Transaction Number mismatch and then release the connection.

5.5 Application message scenarios

5.5.1 Introduction

5.5.1.1 The scenarios illustrate some of the common use cases, but are only informative.

5.5.1.2 In the scenarios, the following abbreviations are used for transmitted messages:

CMD
(the type of command
is given by the scenario)

CMD_ADD_KEYS
CMD_DELETE_KEYS
CMD_DELETE_ALL_KEYS
CMD_UPDATE_KEY_VALIDITIES
CMD_UPDATE_KEY_ENTITIES
CMD_REQUEST_KEY_OPERATION

INQ_DB_CHK INQ_REQUEST_KEY_DB_CHECKSUM

NOTIF_INIT NOTIF_SESSION_INIT

NOTIF_END NOTIF_END_OF_UPDATE

NOTIF_RESP NOTIF_RESPONSE

NOTIF_STATUS NOTIF_KEY_UPDATE_STATUS

NOTIF_ACK NOTIF_ACK_KEY_UPDATE_STATUS

NOTIF_REQ_RCVD NOTIF_KEY_OPERATION_REQ_RCVD

NOTIF_CHECK NOTIF_KEY_DB_CHECKSUM

SNex Sequence Number x in entity e

TNx Transaction Number x

[N] List of N entries

5.5.1.3 A ‘box’ on the time-line means some activity taking an undefined amount of time.

5.5.1.3.1 Note: When a command is not processed, this is clearly stated in the scenario.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 39/65

5.5.2 KMC–KMAC entity key management scenario

5.5.2.1 The following figure describes how to add, delete or update authentication keys in a

KMAC entity.

Home

KMC

A

NOTIF_INIT(TN=0,SNA0)

NOTIF_INIT(TN=0,SNB0)

CMD(TN1, SNA1)[N]

KMAC

entity

B

NOTIF_RESP(TN1, SNB1)[N]

CMD(TN2, SNA2)[N]

NOTIF_RESP(TN2, SNB2)[N]

TLS Connection

NOTIF_END(TN=0,SNA3)

TLS Disconnection

Figure 4 – KMC-KMAC entity key management scenario

5.5.2.2 As soon as the TLS connection is established, both entities send a

NOTIF_SESSION_INIT message with their initial sequence number.

5.5.2.3 After receiving the NOTIF_SESSION_INIT message, the KMC sends a command

message. The KMC does not send any new message until it has received the

corresponding NOTIF_RESPONSE for the previous one.

5.5.2.4 The KMAC entity processes the command and replies with a NOTIF_RESPONSE

using the same Transaction Number as in the command message.

5.5.2.5 Once all transactions are finished, the KMC sends a NOTIF_END_OF_UPDATE and

releases the connection.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 40/65

5.5.3 KMC–KMAC entity: abnormal session release

5.5.3.1 The following figure describes the scenario where a KMAC entity aborts a session.

TLS connection

TLS disconnection

Request from higher

priority application

KMC computes 2 checksums:

without CMD(TN2) processed

(CHK1) and with CMD(TN2)

processed (CHK2)

TLS re-connection

INQ_DB_CHK(TN1, SNA1)
checksum

computation

(SUM)

NOTIF_CHECK(TN1, SNB1, SUM)

CASE (CHK1=SUM) THEN

CMD(TN2) wasn’t processed;

CASE (CHK2=SUM) THEN

CMD(TN2) was processed

NOTIF_INIT(TN=0,SNA0)
NOTIF_INIT(TN=0,SNB0)

NOTIF_RESP(TN1, SNB1)[N]

CMD(TN2, SNA2)[N]

KMC
KMAC

entity

CMD(TN1, SNA1)[N]

NOTIF_INIT(TN=0,SNA0)NOTIF_INIT(TN=0,SNB0)

Figure 5 – KMC-KMAC entity: abnormal session release

5.5.3.2 As soon as the TLS connection is established, both entities send a

NOTIF_SESSION_INIT message with their initial sequence number.

5.5.3.3 After receiving the NOTIF_SESSION_INIT message, the KMC sends a command

message. The KMC does not send any new message until it has received the

corresponding NOTIF_RESPONSE for the previous one.

5.5.3.4 The KMAC on-board entity processes the command and replies with a

NOTIF_RESPONSE using the same Transaction Number as in the command

message.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 41/65

5.5.3.5 After handling the first transaction the KMAC on-board entity needs to abort the

session. It sends NOTIF_SESSION_ABORT and releases the connection.

5.5.3.6 The KMC can determine based on the messages from the KMAC on-board entity that

the first command has been executed, but the second was not. When a session is re-

established with the KMAC entity, the KMC can resume the update.

5.5.4 KMC–KMC key management scenario

5.5.4.1 The following figure describes how to add, delete or update authentication keys of a

KMAC entity belonging to another KM domain.

Issuing

KMC

A

CMD(TN1, SNA1)[N]

Home

KMC

B

NOTIF_RESP(TN1, SNB1)[N]

CMD(TN2, SNB1)[N]

NOTIF_ACK(TN3, SNA1)

NOTIF_STATUS(TN3, SNB1)

KMAC

entity

C

TLS connection

NOTIF_RESP(TN2, SNC1)[N]

NOTIF_INIT(TN=0,SNA0)
NOTIF_INIT(TN=0,SNB0)

TLS Connection

TLS Disconection

NOTIF_END(TN=0,SNA2)

TLS Disconnection

NOTIF_END(TN=0,SNB2)

TLS Connection

NOTIF_INIT(TN=0,SNA0)NOTIF_INIT(TN=0,SNB0)

NOTIF_END(TN=0,SNB2)

TLS Disconnection

NOTIF_INIT(TN=0,SNC0)NOTIF_INIT(TN=0,SNB0)

Figure 6 – KMC-KMC key management scenario

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 42/65

5.5.4.2 As soon as the TLS connection between the KMCs is established, both KMCs send a

NOTIF_SESSION_INIT message with their initial sequence number.

5.5.4.3 After receiving the NOTIF_SESSION_INIT message, the issuing KMC sends a

command message.

5.5.4.4 The KMAC entity’s Home KMC processes the command and replies with a

NOTIF_RESPONSE using the same Transaction Number as in the command

message.

5.5.4.5 Once all transactions are finished, the issuing KMC sends a

NOTIF_END_OF_UPDATE message and releases the connection.

5.5.4.6 When the KMAC entity’s Home KMC and the KMAC entity whose key database shall

be updated are connected, the Home KMC sends the appropriate commands to update

the KMAC entity’s key database.

5.5.4.7 After the Home KMC has received the NOTIF_RESPONSE for these commands, it

releases the connection with the KMAC entity and establishes a new TLS connection

with the issuing KMC. A new connection must be established since in the previous

connection, the Home KMC was the receiver.

5.5.4.8 Once the connection between the KMCs is established, the Home KMC sends a

NOTIF_KEY_UPDATE_STATUS message to the issuing KMC.

5.5.4.9 The issuing KMC acknowledges receiving the notification message with a

NOTIF_ACK_KEY_UPDATE_STATUS message.

5.5.4.10 After receiving the acknowledgement, the Home KMC sends a

NOTIF_END_OF_UPDATE message and releases the connection.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 43/65

5.5.5 Time-out supervision scenarios

5.5.5.1 The following figures describe time-out supervision during connection establishment

and during data transmission. Entity A has initiated the connection.

NOTIF_INIT(TN=0,SNB0)

A

CMD(TN1, SNA1)[N]

B

TLS Connection

NOTIF_INIT(TN=0,SNA0)

NOTIF_RESP(TN1,

SNB1)[N]

TLS Disconnection

A B

TLS Connection

C
o

n
n

e
c
ti
o

n

T
Im

e
-o

u
tNOTIF_INIT(TN=0,SNB0)NOTIF_INIT(TN=0,SNA0)

TLS Disconnection

A
p

p
lic

a
ti
o

n

T
Im

e
-o

u
t

TLS Disconnection

A
p

p
lic

a
ti
o

n

T
Im

e
-o

u
t

TLS Disconnection

A
p

p
lic

a
ti
o

n

T
im

e
-o

u
tCMD(TN1, SNA1)[N]

Figure 7 – Time-out supervision scenarios

5.5.5.2 As soon as the TLS connection is established, both entities send a

NOTIF_SESSION_INIT message to the other entity.

5.5.5.3 Once the TLS connection is established, both entities supervise the time between

receptions and checks the sequence and transaction numbers.

5.5.5.4 In the left-hand figure above, the NOTIF_SESSION_INIT message from A is lost.

When the connection time-out in B expires, B releases the TLS connection. A releases

the connection when the application time-out has expired.

5.5.5.5 In the right-hand figure, when the application time-out expires, both release the

connection. Note that there is no repetition of KMS messages.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 44/65

5.5.6 Sequence and transaction error scenarios

5.5.6.1 The following figures show sequence and transaction errors during connection

establishment and during data transmission. Entity A has initiated the connection.

A

CMD(TN1, SNA1)[N]

B

TLS Connection

NOTIF_INIT(TN=0,SNB0)

TLS Disconnection

due to initialisation

message missing

NOTIF_INIT(TN=0,SNA0)

A
p

p
lic

a
ti
o

n

T
im

e
-o

u
t

TLS Disconnection

C
o

n
n

e
c
ti
o

n

T
Im

e
-o

u
t

CMD not processed

Figure 8 – Sequence error during connection establishment

5.5.6.2 As soon as the TLS connection is established, both entities send a

NOTIF_SESSION_INIT message to the other entity with their initial sequence number.

5.5.6.3 Once the TLS connection is established, both entities supervise the sequence number

and the transaction number, as well as the time between received messages.

5.5.6.4 In the figure above, the NOTIF_SESSION_INIT message from A is lost. When A sends

a command message, B detects that a NOTIF_SESSION_INIT has not been received

before receiving the command message and releases the TLS connection. A could

release the connection due to the expiration of the application time-out or due to the

detection of the TLS disconnection from B.

5.5.6.5 If A does not send any message before the connection time-out elapses, the

connection will be released due to connection time-out.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 45/65

NOTIF_INIT(TN=0,SNB0)

A

CMD(TN1, SNA1)[N]

B

TLS Connection

NOTIF_INIT(TN=0,SNA0)

NOTIF_RESP(TN1, SNB2)[N]

NOTIF_RESP(TN=0, SNA2)

TLS Disconnection

Figure 9 – Sequence number error scenario

5.5.6.6 In the figure above, when A receives a message with the wrong Sequence Number, A

sends NOTIF_RESPONSE message reporting Sequence Number mismatch and

releases the connection.

NOTIF_INIT(TN=0,SNB0)

A

CMD(TN1, SNA1)[N]

B

TLS Connection

NOTIF_INIT(TN=0,SNA0)

NOTIF_RESP(TN2, SNB1)[N]

NOTIF_RESP(TN=0, SNA2)

TLS Disconnection

Figure 10 – Transaction number error scenario

5.5.6.7 In the figure above, when A receives a message with the wrong Transaction Number, A

sends NOTIF_RESPONSE message reporting Transaction Number mismatch and

releases the connection.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 46/65

5.6 Definition of the Key Database checksum algorithm

5.6.1 Algorithm properties

5.6.1.1 A checksum algorithm is used to check the consistency of the key database between

the Home KMC and a KMAC entity.

5.6.1.2 An overview of the checksum algorithm is illustrated in the following figure:

Figure 11 – Overview of the Key DB checksum algorithm

where x is the input for the checksum algorithm.

5.6.1.3 The main features of the checksum algorithm fcs(x) are:

 Detection of differences between key entries in the Home KMC and a KMAC entity

excluding the KMAC.

 Producing the same final checksum HF independently of the order of the input key

structures KS,

fcs(Pa(KS1, KS2, KS3, ... KSn)) = fcs(Pb(KS1, KS2, KS3, ... KSn))

where Pa and Pb denotes different random permutations of the same key structures.

5.6.1.4 The checksum algorithm is depicted in the figure below:

Figure 12 – Definition of the checksum algorithm

5.6.1.5 The algorithm used for the hash is MD4; for details see [RFC-1320].

KS1, KS2, KS3, ..., KSn

Independent order of key

K-STRUCT excluding KMAC

fCS(x)

Checksum algorithm

HF

Final checksum
x fCS(x)

KSn – Key Structure

h(KSi) – hash algorithm

HKSi – hash of the K-STRUCT

 excluding the KMAC

 – denotes XOR

HF – final checksum

KS1 KS2 KS3 KSn

HKS1

HKS2

HKS3

HKSn

HF

h(KS1) h(KS2) h(KS3) h(KSn)

fCS

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 47/65

5.6.1.6 Input for the hash algorithm h(KSi) consists of the K-STRUCT excluding the KMAC as

described in the following table:

Field Size (Bytes) Description

K-LENGTH 1 Length of the KMAC

K-IDENTIFIER 8 Structure that uniquely identifies the KMAC

PEER-NUM 2 Number of KMAC entities that is listed

following this field

ETCS-ID-EXP [PEER-NUM] 4 * PEER-NUM List of KMAC entities linked to this key

VALID-PERIOD 8 Start and end of validity for the KMAC

Table 1: K-STRUCT excluding KMAC

5.6.1.7 An example of key database checksum computation is found in Annex A.

5.6.1.7.1 Note: the KMAC value is not used for computing the key database checksum for the

following reasons:

a) KMAC corruption is very unlikely due to internal implementation checks;

b) Using the KMAC’s value for the computation of the checksum will significantly

reduce the strength of the KMAC as this checksum could be used to compute its value.

5.6.1.8 In case of empty key database, the checksum value shall be set to “0”.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 48/65

6. SECURITY INTERFACE SPECIFICATIONS

6.1 Scope and purpose

6.1.1.1 This chapter specifies the following interfaces:

a) TLS interface: this interface allows establishing a TLS connection between two

KMS entities and securely exchange information over this connection.

b) Certificate delivery interface: this interface between a PKI client (KMS entity) and a

Certificate Authority allows generating or renewing the certificate of the PKI client

using the CMP protocol.

c) Certificate status management: this interface between an OCSP client (KMS

entity) and an OCSP responder (Certificate Authority) allows to check the validity

of a peer entity certificate using the OCSP protocol.

6.1.1.2 This chapter lists the necessary information required to define the TLS, CMP and

OCSP protocols in order to:

a) establish a TLS connection between two KMS entities;

b) exchange information protected by the established TLS connection;

c) request for a new certificate;

d) check the validity of certificates from KMS entities.

6.2 TLS interface specification

6.2.1 Role allocation

6.2.1.1 The TLS client is the entity responsible for establishing the connection with the TLS

server.

6.2.1.2 The KMC shall implement the TLS server function for the following connections:

a) KMC-KMC

b) KMC-KMAC on-board entity

6.2.1.3 The KMC shall implement the TLS client function for the following connections:

a) KMC-KMC

b) KMC-KMAC trackside entity

6.2.1.4 The KMAC trackside entity shall implement a TLS server.

6.2.1.5 The KMAC on-board entity shall implement a TLS client.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 49/65

6.2.2 TLS common requirements

6.2.2.1 The TLS protocol is used in two phases:

a) Handshake phase for authenticating the client and server, and negotiating the

cryptographic information (Premaster secret, algorithm, etc.) necessary for

establishing the TLS session

b) Application data phase (TLS session) for securely exchanging data using the keys

and algorithms negotiated during the handshake phase

6.2.2.2 The TLS version 1.2 shall be supported (see [RFC-5246]). Older versions (1.1, 1.0)

shall not be supported.

6.2.2.3 TLS communication between KMS entities shall be authenticated.

6.2.2.4 TLS communication between KMS entities shall be encrypted.

6.2.2.5 TLS communication between KMS entities shall not use a compression algorithm.

6.2.2.6 Resumption of a previous TLS session, duplication of an existing TLS session and

renegotiation of an existing TLS session is not allowed.

6.2.3 TLS requirements for TLS-PSK

6.2.3.1 A unique pre-shared key shall be generated by the KMC for each pair of KMC and

KMAC entity. This pre-shared key shall be used to authenticate both peers.

6.2.3.2 Installation of a pre-shared key in a KMS entity overwrites any previously stored pre-

shared key in this KMS entity.

6.2.3.3 The size of the pre-shared key shall be at least 256 bits.

6.2.3.4 The TLS clients and servers shall support at least the following cipher suite:

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 (see [RFC-4279], [RFC-5487]).

6.2.3.5 If other pre-shared key cipher suites are supported by TLS clients and servers, these

cipher suites must be recommended by [ENISA] for ‘Future System Use’.

6.2.3.6 The minimum parameter sizes of other supported cipher suite algorithms shall be

compliant with the recommendation made by ENISA for ‘Future System Use’ (see

[ENISA] § 3.6).

6.2.3.7 The handshake procedure, as well as the use of the TLS protocol messages for the

cipher suites defined above, is specified in detail in [RFC-4279] and [RFC-5487].

6.2.3.8 As both TLS clients and TLS servers may have pre-shared keys with different peers, it

is necessary to know which key to use. Therefore, the TLS client indicates which key to

use by including a “PSK identity” in the ClientKeyExchange message (see [RFC-4279],

§2). In addition to help the client in selecting which identity to use, the server shall

provide a PSK identity hint in the ServerKeyExchange message (see [RFC-4279], §2).

6.2.3.9 The expanded ETCS ID of the sender of the TLS message shall be used as the PSK

identity and PSK identity hint.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 50/65

6.2.4 TLS requirements for TLS-PKI

6.2.4.1 The authentication shall be mutual between the TLS client and server, and based on

X509 v.3 certificates (see [RFC-5280]) delivered through the KMS’s PKI.

6.2.4.2 The TLS clients and servers shall support the following cipher suite:

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (see [RFC-5289]).

6.2.4.3 If other cipher suites are supported by the TLS clients and servers, these cipher suites

must be recommended by [ENISA] for ‘Future System Use’.

6.2.4.4 The minimum parameter sizes of other supported cipher suite algorithms shall be

compliant with the recommendation made by ENISA for ‘Future System Use’ (see

[ENISA] § 3.6).

6.2.4.5 The TLS protocol defines some optional messages and for each message the potential

extensions. The table below specifies for the selected cipher suite the list of supported

messages, the direction of the message and for each message which extensions or

options are supported, if any. Other messages are not supported and shall not be

used.

Message Message flow direction Extensions or options used

Client Hello TLS client → TLS server Both “Elliptic Curves Extension” and “Supported Point

Formats Extension” should be used (see [RFC-4492]).

“Multiple Certificate Status Request” extension should

be used (see [RFC-6961]).

Server Hello TLS server → TLS client Both the “Elliptic Curves Extension” and the “Supported

Point Formats Extension” shall be supported.

“Multiple Certificate Status Request” extension should

be used (see [RFC-6961]).

Server

Certificate

TLS server → TLS client No extension or option could be used.

Certificate

Status

TLS server → TLS client Optional message sent to provide the list of OCSP

responses for certificates as answer to the “Multiple

Certificate Status Request” extension.

Server Key

Exchange

TLS server → TLS client No extension or option could be used.

Certificate

Request

TLS server → TLS client Extended as specified in § 5.5 of [RFC-4492].

Server Hello

Done

TLS server → TLS client No extension or option could be used.

Client

Certificate

TLS client → TLS server No extension or option could be used.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 51/65

Message Message flow direction Extensions or options used

Client Key

Exchange

TLS client → TLS server Extended as specified in the § 5.7 of [RFC-4492]

Certificate

Verify

TLS client → TLS server No extension or option could be used.

Finished TLS client  TLS server No extension or option could be used.

Table 2: TLS messages for selected cipher suite

6.2.4.6 The optional use of “Multiple Certificate Status Request” extension (see [RFC-6961]) is

foreseen in order to:

a) mitigate the risk of CA on-line unavailability, mainly for wireless connections;

b) speed up the TLS connection establishment time, mainly for wireless connections;

c) reduce the number of connections to the CA.

6.2.4.7 Hello messages

6.2.4.7.1 The TLS client and TLS server shall support and use the optional “Server Hello” and

“Client Hello” messages.

6.2.4.7.2 A TLS client that proposes ECC cipher suites may choose not to include the “Elliptic

Curves Extension” and “Supported Point Formats Extension”. In this case, the server is

free to choose the elliptic curves or point formats.

6.2.4.7.3 The TLS client and TLS server shall at least support the elliptic curve

“brainpoolP256r1” (see [RFC-5639]).

6.2.4.7.4 A TLS client that proposes “Multiple Certificate Status Request” extension may provide

a zero-length "responder_id_list". In this case, the responders must be implicitly known

by the server, or must be identified by the certificates used by the server.

6.2.4.7.5 The TLS server shall support “Elliptic Curves Extension” and “Supported Point Formats

Extension”.

6.2.4.7.6 The “Supported Point Formats Extension” shall be included in a Server Hello message

in response to a Client Hello message containing the “Supported Point Formats

Extension” when negotiating an ECC cipher suite.

6.2.4.7.7 A TLS server should support “Multiple Certificate Status Request” extension. In such

case the server shall return an extension of type "status_request_v2" with empty

"extension_data".

6.2.4.8 Server Certificate

6.2.4.8.1 The optional “Server Certificate” message shall be used by the TLS server and

supported by the TLS client to authenticate the server.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 52/65

6.2.4.9 Certificate Status

6.2.4.9.1 The “Certificate Status” message shall be used by the TLS server in order to report the

list of OCSP responses for the matching corresponding certificate in the server

Certificate in case of use of “Multiple Certificate Status Request” extension.

6.2.4.9.2 The periodicity for refreshing the list of OCSP responses is a TLS server configuration

parameter. This time period value shall be between 1 hour and 100 hours, with the

default value being 10 hours.

6.2.4.9.3 In case of successful use of the “Multiple Certificate Status Request” extension,

including a freshness check, the TLS client does not need to check the certificate

status of the peer entities through OCSP requests.

6.2.4.10 Server Key Exchange

6.2.4.10.1 The “Server Key Exchange” message shall be used by the TLS server and supported

by the TLS client to convey the server’s ephemeral ECDH public key (and the

corresponding elliptic curve domain parameters) to the client.

6.2.4.11 Certificate Request

6.2.4.11.1 The “Certificate Request” message shall be used by the TLS server and supported by

the TLS client.

6.2.4.11.2 This message shall be extended as specified in § 5.5 of [RFC-4492].

6.2.4.12 Server Hello Done

6.2.4.12.1 The “Server Hello Done” message shall be used by the TLS server and supported by

the TLS client.

6.2.4.13 Client Certificate

6.2.4.13.1 The optional “Client Certificate” message shall be used by the TLS client and

supported by the TLS server.

6.2.4.13.2 The “Client Certificate” message shall comply with the certificate types listed in the

Certificate Request.

6.2.4.14 Client Key Exchange

6.2.4.14.1 The optional “Client Key Exchange” message shall be used by the TLS client and

supported by the TLS server.

6.2.4.14.2 This message shall be extended as specified in § 5.7 of [RFC-4492].

6.2.4.15 Certificate Verify

6.2.4.15.1 The optional “Certificate Verify” message shall be used by the TLS client and

supported by the TLS server.

6.2.4.16 Finished

6.2.4.16.1 The “Finished” message shall be supported and used by both the TLS client and the

TLS server.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 53/65

6.3 Certificate delivery interface

6.3.1 Client certificate delivery functions

6.3.1.1 The following table provides the function allocation for the certificate delivery interface:

Function Message flow direction Purpose

Certificate Request PKI client → PKI server Request a certificate

Certificate

Response
PKI server → PKI client Deliver a certificate

Certificate

Confirmation
PKI client → PKI server Confirm the reception of a certificate

Confirmation

Acknowledgement
PKI server → PKI client Acknowledge the Certificate Confirmation message

Table 3: Functions allocation for the certificate delivery interface

6.3.1.2 Three kinds of certificate generation exist:

a) First certificate: a new certificate with a new public key (first request without any

valid certificate);

b) Certificate renewal: a new certificate with the same key;

c) Certificate rekey: a new certificate with a new key (when requester already has a

valid certificate).

6.3.1.3 For KMS purposes, only requests for a first certificate or certificate rekey shall be used.

6.3.1.4 Certificate Request

6.3.1.4.1 The PKI client is responsible to request the PKI server for delivery of a first certificate.

6.3.1.4.2 The PKI client is responsible to request a certificate rekey a configurable time before

the expiration of the current certificate.

6.3.1.4.3 The PKI client shall generate a public/private key pair at first certificate request and at

every certificate rekey request.

6.3.1.4.4 The PKI client is responsible for keeping its private key secret.

6.3.1.4.5 The public key length for a PKI client shall be 3072 bits.

6.3.1.4.6 The public key length for a Certificate Authority shall be 3072 bits.

6.3.1.4.7 Each PKI client shall have its own Distinguished Name (DN). This DN is unique in the

KMS (see section 6.3.3).

6.3.1.4.8 In case of a first certificate request, the PKI client shall authenticate itself by using

shared secret information (a ‘passphrase’) to create the “protection” field contained in

the “Certificate Request” message.

6.3.1.4.9 The characters used for the passphrase shall be encoded using UTF-8 with a minimum

length of 16 characters.

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 54/65

6.3.1.4.10 The ‘passphrase’ shall not be part of the initial configuration but shall be provided when

needed by a specific process independent from this interface.

6.3.1.4.11 In case of a certificate rekey request, the PKI client has a valid certificate and shall use

this valid certificate to authenticate itself when requesting a new certificate. The PKI

client shall create the “protection” field contained in the “Certificate Request” message

by using the private key associated to its valid certificate.

6.3.1.5 Certificate Response

6.3.1.5.1 If the PKI server considers a certificate request from a PKI client as valid, the PKI

server shall be able to sign and deliver a new certificate to this PKI client.

6.3.1.5.2 If a certificate request is valid, the “Certificate Response” message shall include:

a) a signed certificate corresponding to the template certificate contained in the

certificate request;

b) the certificate hierarchy for this certificate, except the root certificate which has to

be delivered to the PKI client in a secure way (with an organisational process).

6.3.1.5.3 If the certificate request is not valid, the PKI server shall send a negative certificate

response.

6.3.1.6 Certificate Confirmation

6.3.1.6.1 A “Certification Confirmation” message shall be sent by the PKI client to the PKI server

at reception of the “Certificate Response” message.

6.3.1.7 Confirmation Acknowledgment

6.3.1.7.1 The PKI server shall acknowledge the reception of the confirmation from the PKI client.

6.3.1.7.2 Both the certificate in use for a certificate rekey and the new certificate are valid up to

the end of their own validity period, unless revoked by the Certificate Authority.

6.3.2 Interface specification

6.3.2.1 General requirements

6.3.2.1.1 The “Certificate Request”, “Certificate Response”, “Certification Confirmation” and

“Confirmation Acknowledgement” messages shall be exchanged in the same TCP/IP

session.

6.3.2.1.2 In case of TCP disconnection during the certificate distribution process, both PKI client

and PKI server shall discard the current operation, the process shall be considered as

failed by both and the PKI server shall revoke the newly generated certificate.

6.3.2.1.3 The certificate delivered by the PKI server shall conform to X509 v.3 (see [RFC-5280]

and [RFC-6818]).

6.3.2.1.4 The “Certificate Request”, “Certificate Response”, “Certification Confirmation” and

“Confirmation Acknowledgement” messages shall comply with the CMP protocol (see

[RFC-4210] and [RFC-4211]).

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 55/65

6.3.2.1.5 For each optional field in the CMP messages, it shall be stated if this optional field:

 shall be used

 shall not be used

 can be used

6.3.2.1.6 The used fields shall be present in the message.

6.3.2.1.7 The fields that are not used shall not be present in the message.

6.3.2.2 CMP message specification: PKI message common fields

6.3.2.2.1 The “Certificate Request”, “Certificate Response”, “Certification Confirmation” and

“Confirmation Acknowledgement” messages shall comply with Table 4 and Table 5.

PKIMessage (see RFC-4210)

Header Mandatory See PKIHeader defined in Table 5

Body Mandatory Shall be one of the following:

1. CertReqMessages (defined in Table

6) for a Certificate Request Message

2. CertRepMessage (defined in Table

12) for a Certificate Response

Message

3. CertConfirmContent (defined in Table

18) for a Certificate Confirmation

Message

4. PKIConfirmContent (see section

6.3.2.6) for a Confirmation

Acknowledgement Message

Protection Optional Shall be used

extraCerts 1..MAX Optional Shall be used

Table 4: PKIMessage

PKIHeader (See RFC-4210)

pvno Mandatory

sender Mandatory Distinguished Name shall be used

recipient Mandatory Distinguished Name shall be used

messageTime Optional Can be used

UTC time shall be chosen

protectionAlg Optional Shall be used

For a first certificate request,

algorithmIdentifier shall be

PasswordBasedMAC for messages

emitted by the PKI client and

sha384WithRSAEncryption for messages

emitted by the PKI server ([RFC-4055]).

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 56/65

For a certificate rekey, the

algorithmIdentifier shall be

sha384WithRSAEncryption for PKI client

and server.

senderKID Optional Shall be used for the messages emitted

by the PKI client for rekey purpose.

Can be used for other purposes

recipKID Optional Can be used

transactionID Optional Shall be used

senderNonce Optional Shall be used

recipNonce Optional Shall be used

freeText Optional Shall not be used

generalInfo 1..MAX Optional Shall not be used

Table 5: PKIHeader

6.3.2.3 CMP message specification: “Certificate Request” message

6.3.2.3.1 For the “Certificate Request” message, the body of the PKI message shall comply with

Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11.

CertReqMessage (see RFC-4211)

certReqMsg 1..MAX Mandatory See CertReqMsg defined in Table 7

Table 6: CertReqMessage

CertReqMsg (see RFC-4211)

certReq Mandatory See CertRequest defined in Table 8

popo Optional Shall be used.

Shall be a signature of type

POPOSigningKey (see Table 11)

regInfo 1..MAX Optional Shall not be used

Table 7: CertReqMsg

CertRequest (see RFC-4211)

certReqId Mandatory

certTemplate Mandatory See CertTemplate defined in Table 9

controls Optional Shall not be used

Table 8: CertRequest

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 57/65

CertTemplate (see RFC-4211)

version Optional Shall be used

serialNumber Optional Shall not be used

signingAlg Optional Shall not be used

issuer Optional Shall not be used

validity Optional Shall not be used

subject Optional Shall be used

publicKey Optional Shall be used

See SubjectPublicKeyInfo defined in

Table 10

issuerUID Optional Shall not be used

subjectUID Optional Shall not be used

extensions Optional Shall not be used

Table 9: CertTemplate

SubjectPublicKeyInfo (see RFC-3280 and RFC-5280)

algorithm Mandatory The AlgorithmIdentifier shall be

rsaEncryption

subjectPublicKey Mandatory

Table 10: SubjectPublicKeyInfo

POPOSigningKey (see RFC-4211)

poposkInput Optional Shall not be used

algorithmIdentifier Mandatory The algorithmIdentifier shall be

sha384WithRSAEncryption ([RFC-4055])

signature Mandatory

Table 11: POPOSigningKey

6.3.2.4 CMP message specification: “Certificate Response” message

6.3.2.4.1 For the “Certificate Response” message, the body of the PKI message shall comply

with Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17.

CertRepMessage (see RFC-4210)

caPubs 1..MAX Optional Shall be used

response Mandatory See CertResponse in Table 13

Table 12: CertRepMessage

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 58/65

CertResponse (see RFC-4210)

certReqId Mandatory

status Mandatory

certifiedKeyPair Optional Shall be used

See CertifiedKeyPair defined in Table 14

rspInfo Optional Shall not be used

Table 13: CertResponse

CertifiedKeyPair (see RFC-4210)

certOrEncCert Mandatory See CertOrEncCert in Table 15

privateKey Optional Shall not be used

publicationInfo Optional Shall not be used

Table 14: CertifiedKeyPair

CertOrEncCert (see RFC-4210)

certificate

or

encryptedCert

Mandatory Certificate shall be chosen

Table 15: CertOrEncCert

Certificate (see RFC-5280)

tbsCertificate Mandatory See TBSCertificate defined in Table 17

signatureAlgorithm Mandatory The algorithmIdentifier shall

be sha384WithRSAEncryption

signatureValue Mandatory

Table 16: Certificate

TBSCertificate (see RFC-5280)

version Mandatory

serialNumber Mandatory

signature Mandatory The algorithmIdentifier shall

be sha384WithRSAEncryption

issuer Mandatory

validity Mandatory UTC time shall be chosen

subject Mandatory

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 59/65

subjectPublicKeyInfo Mandatory See SubjectPublicKeyInfo defined in

Table 10

issuerUniqueID Optional Shall not be used

subjectUniqueID Optional Shall not be used

Certificate

extensions

Authority Key

Identifier

Mandatory for not « self-signed »

conforming CA.

Shall be used

Subject Key Identifier Mandatory for conforming CA Shall be used

Key Usage Optional Shall be used. Key usage shall indicate

at least that certificate MUST allow the

key to be used for signing

Certificate Policies Optional Shall not be used

Policy Mappings Optional Shall not be used

Subject Alternative

Name

Optional Shall not be used

Issuer Alternative

Name

Optional Shall not be used

Subject Directory

Attributes

Optional Shall not be used

Basic Constraints Conforming CAs MUST include this

extension in all CA certificates that

contain public keys used to validate

digital signatures on certificates and

MUST mark the extension as critical

in such certificates.

Shall be used

Name Constraints Optional Shall not be used

Policy Constraints Optional Shall not be used

Extended Key Usage Optional Shall not be used

CRL Distribution

Points

Optional Shall not be used

Inhibit anyPolicy Optional Shall not be used

Freshest CRL Optional Shall not be used

Authority Information

Access

Optional Shall be used

The authority information access

extension indicates how to access

information and services for the issuer of

the certificate in which the extension

appears. The LDAP protocol shall be

used to access the information.

Subject Information

Access

Optional Shall not be used

Table 17: TBSCertificate

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 60/65

6.3.2.5 CMP message specification: “Certification Confirmation” message

6.3.2.5.1 For the “Certificate Confirmation” message, the body of the PKI message shall comply

with Table 18.

CertConfirmContent (see RFC-4210)

certHash Mandatory

certReqId Mandatory

statusInfo Optional Shall not be used

Table 18: CertConfirmContent

6.3.2.6 CMP message specification: “Confirmation Acknowledgement” message

6.3.2.6.1 For the “Confirmation Acknowledgement” message, the body of the PKI message shall

be empty (see PKIConfirmContent in RFC-4210).

6.3.3 Distinguished Name

6.3.3.1 A Distinguished Name is a name given to an element within a computer system or a

network that uniquely identifies it.

6.3.3.2 The Distinguished Name syntax is defined in standards [X.520], [X.500] and [X.501].

6.3.3.3 A Distinguished Name is made up of “attribute=value” pairs, separated by commas.

6.3.3.4 The on-line KMS will use names with the attributes in the order stated here below:

Distinguished Name

Key identifier Attribute type Content

C Country Code ISO alpha-2 country code

O Organization Name Acronym of the organisation operating the element identified by the OID.
This acronym shall be composed of 2 or 3 uppercase characters from the
Latin alphabet [ISO-8859-1].

OU Organizational Unit
Name

Element abbreviation has to be used as Unit name. I.e. one of the
following:

 KMC

 RBC

 EVC

 RIU

 RA

 CA

CN Common Name The common name represents the name given to the element.

This name shall be composed at maximum of 32 upper case characters
from the Latin alphabet [ISO-8859-1] or digits.

For the KMC, RBC, EVC, and RIU the Common Name shall be the
expanded ETCS ID in hexadecimal.

Table 19: Distinguished Name syntax

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 61/65

6.3.3.5 For example, an ETCS on-board equipment (EVC) with ETCS-ID-EXP: 02E6A54B

(where 02 is the ETCS-ID type and E6A54B is the ETCS-ID) operated by

Banedanmark (BDK) in Denmark (DK) shall have the following Distinguished Name:

DK, BDK, EVC, 02E6A54B

6.4 Certificate status check interface

6.4.1 Certificate status check functions

6.4.1.1 The following table provides the functions allocation for the certificate status check

interface:

Function Allocation Purpose

OCSP Request PKI client Request for the revocation status of a certificate

OCSP Response PKI server Provide the revocation status of a certificate

6.4.1.2 OCSP Request

6.4.1.2.1 The PKI client shall be able to check whether the certificate of a peer has been revoked

or not, by sending an OCSP Request to the PKI server.

6.4.1.3 OCSP Response

6.4.1.3.1 The PKI server shall be able to send an OCSP Response to a PKI client having emitted

an OCSP Request.

6.4.2 Interface specification

6.4.2.1 General requirements

6.4.2.1.1 The OCSP Request and OCSP Response shall be exchanged on the same TCP/IP

session.

6.4.2.1.2 In case of TCP disconnection during the certificate check process, both PKI client and

PKI server shall discard the current operation and consider the process as failed.

6.4.2.1.3 The OCSP Request and OCSP Response messages shall conform to OCSP protocol

described in [RFC-2560] and [RFC-6277].

6.4.2.1.4 The check of the peer certificate chain shall be performed at the reception of any

certificate from a peer entity unless this information is provided by the “Multiple

Certificate Status Request” extension.

6.4.2.1.5 The PKI server shall send an OCSP Response if these two conditions are fulfilled:

a) The OCSP Request message is compliant to [RFC-2560] and [RFC-6277]

b) The request contains the information needed by the OCSP server

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 62/65

6.4.2.2 OCSP message specification: OCSP Request

6.4.2.2.1 The OCSP Request shall comply with Table 20, Table 21, Table 22 and Table 23.

OCSPRequest (see RFC-2560)

tbsRequest Mandatory See TBSRequest in Table 21

optionalSignature Optional Shall not be used

Table 20: OCSPRequest

TBSRequest (see RFC-2560)

version Mandatory

requestorName Optional Shall not be used

requestList Mandatory See Request defined in Table 22

requestExtensions Optional Shall not be used

Table 21: TBSRequest

Request (see RFC-2560)

reqCert Mandatory See CertID defined in Table 23

singleRequestExtensions Optional Shall not be used

Table 22: Request

CertID (see RFC-2560)

hashAlgorithm Mandatory The AlgorithmIdentifier shall be SHA1.

issuerNameHash Mandatory

issuerKeyHash Mandatory

serialNumber Mandatory

Table 23: CertID

6.4.2.3 OCSP message specification: OCSP Response

6.4.2.3.1 The OCSP Response shall comply with Table 24, Table 25, Table 26, Table 27 and

Table 28.

OCSPResponse (see RFC-2560)

responseStatus Mandatory

responseBytes Optional Shall be used

See responseBytes defined in Table 25

Table 24: OCSPResponse

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 63/65

ResponseBytes (see RFC-2560)

responseType Mandatory Shall be id-pkix-ocsp-basic

response Mandatory Shall be the DER encoding (see [X.690]) of

BasicOCSPResponse defined in Table 26

Table 25: ResponseBytes

BasicOCSPResponse (see RFC-2560)

tbsResponseData Mandatory See ResponseData defined in Table 27

signatureAlgorithm Mandatory The AlgorithmIdentifier shall be

sha384WithRSAEncryption

signature Mandatory

certs Optional Shall be used

Table 26: BasicOCSPResponse

ResponseData (see RFC-2560)

version Mandatory

responderID Mandatory

producedAt Mandatory

responses Mandatory See SingleResponse defined in Table 28

responseExtensions Optional Shall not be used

Table 27: ResponseData

SingleResponse (see RFC-2560)

certID Mandatory See CertID defined in Table 23

certStatus Mandatory

thisUpdate Mandatory

nextUpdate Optional Shall not be used

singleExtensions Optional Shall not be used

Table 28: SingleResponse

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 64/65

7. TRANSPORT INTERFACE SPECIFICATION

7.1 Scope and purpose

7.1.1.1 This chapter specifies the information needed to establish end-to-end connections at

the transport level from the on-board KMAC entity.

7.1.1.2 This involves:

a) specification of addressing;

b) definition of the TCP parameters;

c) definition of the functional interface with the EuroRadio Co-ordinating function for

the KMAC on-board entities that provides the IP access service.

7.2 Addressing

7.2.1.1 A DNS query shall be used to resolve the IP address of KMC, RA and CA.

7.2.1.2 For the KMS entities, the format of the DNS query shall comply to § 9.14.5 of [EIRENE

SRS].

7.2.1.3 For RA and CA, the FQDN to be used shall be configured in each KMS entity.

7.3 TCP specification

7.3.1.1 For KMAC on-board entity, the TCP configuration specified in § 8.3 of [Subset-037]

shall be used unless otherwise stated in this section.

7.3.1.2 The listening TCP port for the KMS application is 7912.

7.3.1.3 The recommended value for the “TcpUserTimeout” is 40 seconds.

7.3.1.4 The recommended “Max TCP segment size” for the KMS application is 550 bytes.

7.3.1.5 The values of some TCP Parameters can be proposed in the DNS TXT field, see §

8.4.1 of [Subset-037], but the applicability of such proposed values is optional,

depending on the implementation.

7.4 Functional interface with EuroRadio Co-ordinating function

7.4.1.1 The KMS application uses the primitive Rm-SERVICE.request with the application type

set to “KMS” to request the allocation of an IP service (see § 8.5 of [Subset-037]).

7.4.1.2 The primitive Rm-SERVICE.indication reports the result of the Rm-SERVICE.request to

the KMS application (see § 8.5 of [Subset-037]), stating the service ID assigned to the

KMS application and the outcome of the request through the parameters Reason and

Sub-reason.

7.4.1.3 The primitive Rm-SERVICE.release is used by the KMS application to release the used

IP service or by the co-ordinating function to report the release of the IP service for any

reason (see § 8.5 of [Subset-037]).

© This document has been developed and released by UNISIG

SUBSET-137

1.0.0

On-line Key Management FFFIS Page 65/65

ANNEX A. KEY DATABASE CHECKSUM COMPUTATION

This annex gives an example of how to compute the key database checksum.

Consider the following example (differences between each key structure marked yellow):

KSEXAMPLE_1 KSEXAMPLE_2 KSEXAMPLE_3

K-LENGTH = 0x18

ETCS-ID-EXP = 0x04030201

SNUM = 0x0000FEDC

PEER-NUM = 0x03

ETCS-ID-EXP [1]

= 0x0100000A

ETCS-ID-EXP [2]

= 0x0100000B

ETCS-ID-EXP [3]

= 0x0100000C

VALID-PERIOD

= From 2015-03-21 14h,

 To 2015-03-25 18h

K-LENGTH = 0x18

ETCS-ID-EXP = 0x04030201

SNUM = 0x0000FEDD

PEER-NUM = 0x03

ETCS-ID-EXP [1]

= 0x0100001A

ETCS-ID-EXP [2]

= 0x0100001B

ETCS-ID-EXP [3]

= 0x0100001C

VALID-PERIOD

= From 2015-03-21 14h,

 To 2015-03-25 18h

K-LENGTH = 0x18

ETCS-ID-EXP = 0x04030201

SNUM = 0x0000FEDE

PEER-NUM= 0x03

ETCS-ID-EXP [1]

= 0x0100002A

ETCS-ID-EXP [2]

= 0x0100002B

ETCS-ID-EXP [3]

= 0x0100002C

VALID-PERIOD

= From 2015-03-21 14h,

 To 2015-03-25 18h

All values shall be encoded in big endian format.

Memory map of KSEXAMPLE_1:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 18 04 03 02 01 00 00 FE DC 00 03 01 00 00 0A 01

16 00 00 0B 01 00 00 0C 14 21 03 15 18 25 03 15

Resulting MD4 hash: h(KSEXAMPLE_1) = 0x 9D 16 B2 0B F4 25 99 E0 F8 B7 77 0A 0D DE 57 9F

Memory map of KSEXAMPLE_2:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 18 04 03 02 01 00 00 FE DD 00 03 01 00 00 1A 01

16 00 00 1B 01 00 00 1C 14 21 03 15 18 25 03 15

Resulting MD4 hash: h(KSEXAMPLE_2) = 0x 75 6B 7E 1F DF 74 5D 96 32 7C 1D 4E 84 6D E8 FB

Memory map of KSEXAMPLE_3:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 18 04 03 02 01 00 00 FE DE 00 03 01 00 00 2A 01

16 00 00 2B 01 00 00 2C 14 21 03 15 18 25 03 15

Resulting MD4 hash: h(KSEXAMPLE_2) = 0x F3 3D 86 FB 93 A7 C7 B3 F8 90 71 CC 3E FF 39 20

Final checksum HF:

HF = h(KSEXAMPLE_1) ⊕ h(KSEXAMPLE_2) ⊕ h(KSEXAMPLE_3)

HF = 0x 1B 40 4A EF B8 F6 03 C5 32 5B 1B 88 B7 4C 86 44

