

RAILWAY SAFETY PERFORMANCE IN THE EUROPEAN UNION

Design and typeset _ Kisseler Media ${ }^{\circ}$

Photographs _European Railway Agency (Safety Unit staff members)
Railway safety performance in the European Union 2012
60 pages
$21 \times 29.7 \mathrm{~cm}$
© European Railway Agency, 2011
Reproduction is authorised provided the source is acknowledged.
European Railway Agency
120 rue Marc Lefrancq
BP 20392
59307 Valenciennes Cedex
FRANCE
Tel. +33 327096500
Fax +33 327334065
http://www.era.europa.eu

CONTENTS

LIST OF ABBREVATIONS (04)
FOREWORD (05)

06
SUMMARY

07 _ INTRODUCTION
REPORTING ON SERIOUS AND SIGNIFICANT ACCIDENTS IN 2011 (EU COUNTRIES) (08)
REPORTING OF ACCIDENT STATISTICS AND INDICATORS BY NSAS (09)
REPORTING OF SERIOUS ACCIDENTS AND ACCIDENT INVESTIGATIONS BY NIBS (10)
ANNUAL SAFETY REPORTS (10)

11 _ RAILWAY SAFETY PERFORMANCE HISTORICAL DEVELOPMENT OF RAILWAY SAFETY (12) DEVELOPMENT IN MAJOR RAILWAY ACCIDENTS WITH FIVE OR MORE FATALITIES (13)
COMMON SAFETY INDICATORS (14)
COMMON SAFETY TARGETS (25)

28 _ ACCIDENT INVESTIGATION
RECOMMENDATIONS FROM INVESTIGATION REPORTS (30)
LEVEL-CROSSING ACCIDENTS INVESTIGATION REPORTS ANALYSIS (32)
MAJOR RAILWAY ACCIDENTS (34)
INVESTIGATION OF MAJOR ACCIDENTS OCCURRING IN 2010 (38)

40 _ MANAGING SAFETY
SAFETY REGULATION (40)
SAFETY CERTIFICATION (41)

43 _ LOOKING FORWARD

44 ANNEX 1: COMMON SAFETY INDICATORS

57 ANNEX 2: LIST OF NATIONAL SAFETY AUTHORITIES AND NATIONAL INVESTIGATION BODIES

LIST OF ABBREVIATIONS

ATM	automatic train protection
CSI	common safety indicator
CSM CA	common safety method for conformity assessment
CST	Channel Tunnel
CT	European Railway Agency
ERA	European railway accident information links
ERADIS	infrastructure manager
ERAIL	key performance indicator
IM	national investigation body
KPI	national reference value
NIB	national safety authority
NRV	Railway Interoperability and Safety Committee
NSA	railway safety directive
RISC	railway undertaking
RSD	safety management system
RU	value of preventing a casualty
SMS	willingness to pay
VPC	
WTP	

FOREWORD

This is the fifth annual report by the European Railway Agency（ERA）on the development of railway safety in the European Union．The societal impact of accidents，in terms of fatalities and injuries continues to diminish；however，progress for some accident types is less positive over recent years．From the reported data， 2010 was the safest year on EU railways for both passengers and staff since 2006．Only one major railway accident（with more than five fatalities）occurred in 2010，but there were a number of accidents resulting in extensive material damage that in less fortunate circumstances might have led to numerous casualties．Similarly，the number of recorded accident precursors remains considerable，a potential warning signal for the railway undertakings for performing efficient monitoring and for identifying potential and root causes．

Thanks to the concerted effort of all national safety authorities（NSAs）and the ERA，the first fully harmonised set of railway safety data for all EU countries can be published．Working towards better quality data remains a never－ending task that the Agency continues to give priority to．

The annual assessment of common safety targets（CSTs） and of the national reference values unveiled possible deterioration of railway safety performance in a small number of countries．However，a closer look confirms that in most cases，the possible underperformance might be a reflection of a poor data quality in the past，together with limits of the method when the calculated outcomes are close to zero．A new set of CSTs was prepared by the Agency during 2011，in line with Commission Decision 2009／460／EC．The new targets will be used when assessing the safety performance of Member States over the next three years．

The number of safety certificates issued to railway undertakings for international operation remains limited， showing a slow progress in the creation of the common railway safety system in the EU．The Agency has now put in place a migration strategy paving the way towards a single certificate．This would eventually require even more cross－ border cooperation between NSAs．

The Agency has now completed all major tasks required in the railway safety directive and in the Agency regulation． All the common safety methods are now about to be put into place and the ERA is now entering a new phase in respect to its daily activities．It is notably preparing two new activities that aim at assisting the national bodies in carrying out their daily tasks；both the NSAs and the national investigation bodies（NIBs）are cooperating in these new ventures．The first activity is the programme for the cross－audit of NSAs；and the second concerns the voluntary assessment of NIBs．We hope that both activities will provide a basis for further improvements in the daily processes managed by national bodies．From 2006 onwards，the Member States have been establishing the national bodies，which are currently attaining the first level of organisational maturity；now is certainly the right time to assess and to seek to improve their processes．

Last，but not least，in order to enhance communication and mutual understanding between all actors concerned with the regulation of railway safety，the Agency is proposing to reinforce the coordination between NSAs，NIBs and the sector organizations in a joined structure with the aim to enable those with rail safety responsibilities to share knowledge and coordinate actions using the evidence and analysis．It aims to enable those with rail safety responsibilities to share knowledge and coordinate actions using the evidence and analyses．

THIERRY BREYNE／Head of Safety Unit

SUMMARY

Railways are one of the safest modes of transport in the European Union and the safety performance continued to improve in 2010. Overall, Member States reported 2401 significant railway accidents with 2492 casualties. The total number of significant accidents fell in 2010; however no improvement was registered for the number of collisions and derailments.

According to the common safety indicators (CSIs) data provided by the national safety authorities (NSAs) to the European Railway Agency (ERA), 1256 people were killed and a further 1236 seriously injured in 2010. While the number of fatalities is by far the lowest figure recorded since 2006, the number of serious injuries saw a slight increase in 2010. Among the 1256 fatalities reported, 60% (750) were third-party victims: unauthorised persons on railway premises. Single fatality accidents, such as unauthorised persons being hit by rolling stock in motion or levelcrossing accidents, form the major part of the fatalities. Train collisions, derailments and fires cause less than 3% of the fatalities.

The number of level-crossing accidents constitutes a substantial share of the total number of accidents. Member States reported that 359 level-crossing users were killed and 327 were seriously injured in a total of 619 accidents occurring on more than 120000 level crossings in the EU. Level-crossing accidents represent a quarter of all railway accidents, but their number has decreased substantially since 2006. In 2010, Member States reported a total of 54 accidents involving dangerous goods. In 37 of them, the transported dangerous goods were released as a result of the accident.

The total number of passengers killed for the period from 2008 to 2010 is 188 , a small figure compared to the total number of 4120 persons killed on the railways over the same period of time. Passenger and employee fatalities make up 5% of all persons killed on European railways, suicides excluded. Over 60% of fatalities and 40% of serious injuries happened to persons crossing or walking along tracks in unauthorised places; these numbers have not decreased over time.

The majority of fatalities on the EU railways are suicides; these are counted separately to other railway fatalities. The knowledge about reporting practices points to persisting difficulties in determining whether the killed person was a suicide or not, therefore this data needs to be interpreted with caution. Over 2743 suicides were recorded in 2010; more than 50 per week on average.

After a 2 \% drop in 2009, the traffic performance in terms of train-kilometres has stagnated in 2010; 4019 million train-km were recorded on the EU railway network. Passenger-kilometres account for 80% of the total trainkilometres in the EU; this number decreased slightly to 397 billion km in 2010.

The national investigation bodies (NIBs) have notified the Agency of 221 investigations of accidents and incidents that occurred during 2011. This means that less than 10% of significant accidents are investigated by NIBs. This may not be sufficient to obtain clear insight into the underlying causes of different types of accidents.

INTRODUCTION

Background

Railway transport is one of the safest forms of travel. Even so, it is essential to maintain and improve the current level of safety for the benefit of European citizens. The continuous opening of the railway market in Europe brings a challenge to public authorities and railway operators to ensure rail travel remains a safe and attractive mode of transport for passengers and freight customers.

The European Railway Agency (ERA) is a cornerstone of the EU strategy for railway safety. It supports national safety authorities (NSAs) and national investigation bodies (NIBs) in their tasks and provides evidence for policy actions at EU level. It assures coordination of activities such as monitoring, evaluation and developing legislation.

The monitoring of safety performance is one of the key tasks of the ERA. The ERA collects, processes, and analyses different sets of data so that it can support conclusions
and recommendations on actions to be taken. In this way the ERA facilitates evidence-based policy-making at the EU level.

By continuously monitoring and analysing safety performance the ERA provides the assurance that the ultimate objective of maintaining and improving safety where reasonably practicable can be achieved also at EU level.

Scope

The report Railway safety performance in the European Union summarises information on the development of railway safety in Europe. The primary purpose is to provide safety intelligence and information on risks to EU policy-making bodies, NSAs and NIBs, and to the general public. The report reviews the performance levels achieved during 2010 across a number of topic areas. It includes basic statistical analyses on a wide range of safety performance indicators and highlights significant findings.

The report is based on the common safety indicators (CSIs) data reported to the ERA by 15 November 2011. Any changes after that date have not been taken into account. Information presented on serious accidents and their investigations is based on reports available to the ERA by the end of 2011. Any event occurring after that day is not covered by this report.

This report covers the railways in 25 of the 27 EU Member States; Cyprus and Malta do not have railway systems that are covered by EU legislation. These 25 Member States are referred to as 'EU', or 'EU countries' in the report.

The Channel Tunnel (CT) is a separate reporting entity, so that relevant data are given separately to the French and UK data. The data are also reported by Norway. Therefore, there were a total of 27 reporting entities in 2010; we have used the term 'Europe' for this complete group in the report.

Content

European legislation requires Member States to report to the ERA on significant accidents and serious accidents occurring on their territory. The NSAs must report all significant accidents. The NIBs must investigate all serious accidents, notify the ERA of these investigations and, when closed, send the investigation report to the ERA. The term significant accident covers a wider range of events than serious accidents. The legislation provides the following definitions for these two groups of accident:

Significant accident	Serious accident
Directive 2004/49/EC, Commission Directive 2009/149/EC and Regulation (EC) No 91/2003	Directive 2004/49/EC
'significant accident' means any accident involving at least one rail vehicle in motion, resulting in at least one killed or seriously injured person, or in significant damage to stock, track, other installations or environment, or extensive disruptions to traffic. Accidents in workshops, warehouses and depots are excluded (${ }^{1}$). Significant damage is damage that is equivalent to EUR 150000 or more.	'serious accident' means any train collision or derailment of trains, resulting in the death of at least one person or serious injuries to five or more persons or extensive damage to rolling stock, the infrastructure or the environment, and any other similar accident with an obvious impact on railway safety regulation or the management of safety; 'extensive damage' means damage that can immediately be assessed by the investigating body to cost at least EUR 2 million in total (${ }^{2}$).
Reporting of CSIs by NSAs	Accident investigation by NIBs
Each year the safety authority shall publish an annual report concerning its activities in the preceding year and send it to the Agency by 30 September at the latest. The report shall contain information on: (a) the development of railway safety, including an aggregation at Member State level of the CSIs laid down in Annex I (${ }^{(3)}$	Within one week after the decision to open an investigation the investigating body shall inform the Agency thereof. The investigating body shall send the Agency a copy of the final report normally not later than 12 months after the date of the occurrence (${ }^{4}$).

Table 1 _ Accidents reported to the ERA according to the EU legislation

Reporting on serious and significant accidents in 2011 (EU countries)

Each year, the NIBs notify the Agency that they have opened about 200 investigations into serious accidents and other accidents and incidents. The NSAs report about 3000 significant accidents a year (Table 2). Among those occurrences investigated by the NIB, only one fifth of investigated occurrences were serious accidents as referred to in Article 19(1) of the railway safety directive (RSD). This means that one serious accident is investigated by an NIB out of 75 significant accidents reported by NSAs under the CSIs. As the railway undertakings (RUs) and infrastructure managers (IMs) should normally investigate all serious accidents as part of their safety management systems (SMSs) those accidents which have not been investigated by the NIBs, will be included in the investigations made by railway operators. Some NIBs also investigate accidents and incidents other than those for which investigation is mandatory according to the RSD, in accordance with Article 21(6) of the RSD and their national legislation.

	National safety authorities		National investigation bodies
Year of reporting	Significant accidents	Precursors	Notifications of opened investigations
2009	3027	9561	187
2010	2401	15202	224
2011		n.a.	253

Table 2 _ Number of events reported to the ERA in the period 2009-2011 (EU-27)

Reporting of accident statistics and indicators by NSAs

Data on safety performance collected at EU level are known as common safety indicators (CSIs). The CSIs to be reported to the ERA were laid down and defined in Annex I to the RSD in 2004. In 2010, for the first time, the NSA had to report using the CSI definitions provided in the revised Annex I to the RSD published on 27 November 2009 (${ }^{5}$). As a consequence, the 2010 CSI data represents the first fully harmonised set of CSIs, as the use of national definitions was no longer permitted. Member States are also required to report accident data to Eurostat, but this practice will be abandoned from 2013 when the ERA will become the sole collection point for railway safety data at the EU level.

The fifth annual set of data for the CSIs was largely reported on time and with less effort for correction than in previous years. As a new reporting interface, ERAIL, was put in place by the ERA in 2011, less effort was necessary to correct data than in previous years. Now, each country is responsible for the quality of the reported data; the system provides support by identifying inconsistencies in reported values in comparison with previous years and by giving immediate feedback to the NSA. Thus, possible errors in the data can be checked before submitting the dataset to the Agency.

The introduction of the new Annex I has brought more consistency in the CSI data reported by Member States. Indeed, some countries possibly aligned their national reporting practice with the revised Annex I requirements only in 2010. The application of the new Annex I also means that a brand new set of CSIs became available in 2010. This set includes statistics on dangerous goods accidents, types of level-crossings and aggregated traffic performance data.

Data quality continues to improve so that this year it has again been possible to update some data reported in previous years; the CSI tables in the annex to this report replace the previously published tables. We have also observed that the collection of CSI data can be more complicated in those countries where there are a large number of railway undertakings (RUs). It might be more difficult for the NSAs in these countries to assure the quality of data provided by the RUs and infrastructure managers (IMs).

The Agency has also been working together with the Member States on improving the common understanding of the CSI definitions. At the end of 2010, the Agency published the revised Guidance on CSI data reporting; this was the result of the work done by the Safety Performance Working Party and the dedicated task force.

Reporting of serious accidents and accident investigations by NIBs

The RSD requires the Member States to set up an independent accident investigation body that shall notify the Agency of any investigations opened, and shall submit the full investigation report to the ERA when the investigation is closed. In 2011, the NIBs notified the ERA of 253 opened investigations and submitted 289 investigation reports. The information is available on the ERA's public database ERADIS (http://pdb.era.europa.eu).

When deciding whether to investigate an occurrence or not, the NIB must first verify whether the occurrence meets the criteria for a serious accident, given in Article 19(1) of the RSD. If it does, it will be investigated. If it does not, the NIB should assess whether the occurrence would fall under the criteria given in Article 19(2) - an accident or incident which under slightly different conditions might have led to serious accidents. The NIB should then decide whether to investigate or not - here national requirements may also need to be considered.

In spring 2011, the Agency published the Guidance on the decision to investigate accidents and incidents Articles 3(I), 19 and 21(6) (6). This guidance is a reference manual for accident investigation bodies and other parties directly or indirectly concerned with the decision to investigate accidents and incidents, and provides examples to
facilitate a common approach to investigating accidents throughout Europe. The guidance aims to help NIBs to take the correct decision on whether to investigate or not. Currently, there are still discrepancies between countries as regards the decision to investigate a given occurrence or not.

In 2012, an integrated and comprehensive guidance on investigation will be developed in a concerted joint effort by NIBs and the Agency. Similarly the process of reporting of serious accident and incident investigations shows wide variations between countries. This is one of the reasons why the Agency is currently working together with the NIBs to develop an assessment programme to promote harmonised approaches and good investigation practice across the EU.

Annual safety reports

The NSAs should have sent their annual safety report together with the CSI dataset to the Agency by the end of September 2011. Only half of the NSAs managed to submit their report on time, although, by mid-October, the CSI data for 2010 had been submitted by all countries.

The NIBs are also required to send an annual report to the ERA by the end of September 2011. However, the Agency had only received half of the 2011 annual reports by that date. The reports showed a large variation in the number of investigations opened by NIBs, during 2010; the numbers ranged from 0 to more than 15 per NIB, and similarly the number of recommendations issued following the investigation varied, ranging from 0 to 17
per investigation. This may partly be a result of variation in the size of national railway systems and consequently traffic performance, and partly because of differences in national investigation practices and arrangements. Half of the NIBs did not submit their annual report by the deadline of 30 September. The Agency is planning an assessment exercise in 2012 to provide feedback to NIBs on the quality and timeliness of their reports.

RAILWAY SAFETY PERFORMANCE

Introduction

The level of safety can be measured and assessed in various ways. The most obvious indicators are the number of railway accidents and the resulting casualties. A comprehensive set of risk indicators where the outcomes are standardised by exposure such as train-kilometres allows for the identification of under-performance, i.e. increased risk, which may require remedial action. Outcomes and risk indicators provide an initial impression about the extent of the safety problem, but their usefulness as indicators for safety management and evidence-based policy-making is limited (Figure 1).

They do not directly point to the underlying problems, so the measures taken on the basis of data about outcomes may not be well-targeted and cost-effective. Additional indicators have therefore been under development to provide supplementary information for assessing and managing railway safety, as they can provide insight into safety management by the national authorities, such as supervision and authorisation.

CSIs do not provide full picture of the adequacy of the operational arrangements put in place through the SMSs, which show adverse safety outcomes. Use or frequency of emergency braking (as applied by the train driver) might be used as a key performance indicator (KPI), rather than a CSI.

Figure 1 _ Pyramidal model for railway safety management

The development of railway safety indicators at EU level has been underway since early 2000. The railway safety directive (2004/49/EC) introduced the first indicators, so called CSIs that focus on safety outcomes and provide the basis for risk measurement. Member States continued to use their national definitions to report these indicators during the first four years of reporting; now, since 2010, the harmonised definitions of CSIs in Commission Directive 2009/149/EC must be applied.

Not all safety performance indicators are covered by the CSIs; so new indicators may be introduced in the future. Similarly, there is no common approach towards the measurement of a risk regulation regime at Member State level. Indicators reflecting corresponding levels of the pyramid may be subject to future development. Not all of them are traditional quantitative indicators such as CSIs or KPIs. They may lead to a new approach to the assessment of railway safety management systems at both Member State and EU levels.

Historical development of railway safety

The overall level of railway safety in Europe, as measured by fatal train collisions and derailments per billion train-kilometres, has gradually improved since 1990, though there is considerable scatter from year to year. The estimated overall trend is a reduction in the accident rate of 6% per year (${ }^{7}$). This gives a fall of 70% from 1990 to 2011 (Figure 2). The estimated underlying average number of fatal train accidents per year in Europe was about 18 in 1990 and 6 in 2011. Despite a positive long-term trend in the risk of fatal train collisions and derailments over the past two decades, the data in Figure 2 suggests that the progress has been slowing down, in particular since 2004.

Figure 2 _ Fatal train collisions and derailments per billion train-kilometres in 1990-2011 for the EU-27, Switzerland and Norway (${ }^{8}$)

The number of fatalities in railway accidents has seen a distinct, downward trend for all categories of accidents, except level-crossing accidents. This can be partly explained by the continuous increase in road traffic across Europe, as
contributing to the likelihood of a level-crossing collision. The current programmes to remove or upgrade levelcrossings might not be extensive enough to compensate for the increased risk of a level crossing collision.

[^0]
Development in major railway accidents with five or more fatalities

Major accidents with passenger fatalities rarely escape the attention of the media and the public, so data on these may be more complete. During the year 2011, the Agency has improved with the help of Member States the historical archive of railway accidents from 1980 to 2009, but the data for the 1980s may not yet be complete.

Figure 3 is based on data from the historical archive of railway accidents maintained by the Agency; it shows the number of major accidents and resulting fatalities for the 32 years 1980-2011. It includes not only the train collisions and derailments with five or more fatalities (as shown in Figure 1), but also the major level-crossing accidents, train fires, and accidents involving groups of persons struck by rolling stock in motion.

The trend in the major accident rate per billion trainkilometres is strongly downward over the period 19902011, but somewhat less steep if taken back to 1980-2011. Therefore it is possible that the rate of improvement was less good in the 1980s.

Figure 3 shows that there were on average eight major railway accidents each year during the 1990s, this figure has now come down to five accidents per year in the 2000s. There were only three major accidents with five or more fatalities in Europe in 2010 and one in 2011.

Figure 3 _ Railway accidents with five or more fatalities (1980-2011) $\mathbf{(}^{9}$)

(${ }^{9}$) All EU countries, Norway and Switzerland, excluding Romania for the period 1980-89. Accidents on railway mainlines not covered by the RSD are also included.

Common safety indicators

Significant accidents

Around 3000 significant accidents occur each year on the railways of the EU Member States. Accidents to persons caused by rolling stock in motion and level-crossing accidents constitute more than three quarters of the total number of accidents, excluding suicides. The number of significant accidents per accident type in the period 2008-10 is shown in Figure 4. For all types of accident, the reported number of accidents in 2010 was lower than in the two preceding years and a distinct downward trend over the period 2008-10 can be observed.

In 2010, a total of 2401 significant accidents were reported by Member States, a significant drop of 20% compared to the previous year. However, the real decrease may not be so great, because both Poland and Belgium have changed their reporting practices since 2010, leading to a lower count in several categories of accidents. Leaving out the two countries that have changed their reporting practice, the decrease in railway accidents in Europe was only 6% between 2009 and 2010 (Table 3).

For the first time, the number of reported collisions fell below 100, to 99 . Again, however, this decrease disappears when the data for Belgium are excluded as their reporting practice has changed. Most of the reported events are collisions between a train running into an object within the clearance gauge, but their exact proportion is not known. The number of collisions between trains, which is generally the more serious type of collision, remains relatively low.

Similarly, the reported number of train derailments dropped significantly in 2010, from 174 to 95 . However, again, this decrease is probably the result of the change in reporting practice in both Belgium and Poland (Table 3). Excluding these two countries from the analysis, the data shows a rise in the number of derailments between 2009 and 2010. Furthermore, when excluding countries that reported changes in reporting procedure over the longer period of 2008-10, the risk of derailment (per train-kilometre) was relatively high in Greece, Slovakia and Estonia over the above period of time.

In summary, on average a derailment or a collision is reported at least every second day in the EU, causing significant disruptions to railway operations. The registered decrease could partly be attributed to the change in reporting practice in Belgium and Poland. The reported number of level-crossing accidents decreased in 2010, but the real yearly change is probably close to zero. Altogether 619 level-crossing accidents were reported in 2010.

The Member States reported 1420 accidents to persons caused by rolling stock in motion in 2010. The risk of this type of accident is relatively high in the three Baltic countries and in some east European countries (Romania, Slovakia). In these countries the risk of this type of accident in 2010 was more than one accident per million train-kilometres in 2010.

The number of fires in rolling stock decreased for the fourth year in a row and reached an historically low level in 2010: 23 fires in rolling stock were reported by just eight Member States.

A wide range of accidents, not included within the specific types of accidents, are included in the category of other accidents. The 145 cases reported in 2010 include collisions and derailments of shunting rolling stock/maintenance machines, dangerous goods released during transport, objects projected by the running train, and electrocution in connection with the rolling stock in motion; the category other accidents is the third largest group of accidents.

Even when considering the recent changes in reporting practice that have taken place in a number of countries, it can be seen that there has been a slight reduction in the number of rail accidents in Europe over the past five years. Vigilance is necessary as the pace of reduction was lower than in the preceding years.

Accident types	Year	EU-27	Change	BE	PL	EU-27 - (BE + PL)	Change
Collisions of trains	2009	134		34	18	82	
	2010	99	-26%	5	4	90	$+10 \%$
Derailments	2009	174		41	63	70	$+9 \%$
of trains	2010	95	-45%	2	17	76	$+1 \%$
Level-crossing accidents	2009	831		31	288	512	516
Total No of	2010	619	-26%	17	86	2038	-6%
accidents	2009	3027		146	843	$\mathbf{2 0}$	

Table 3 _ The number of different types of accidents for the EU-27 and a selection of countries (2009-2010)

When a railway accident involves dangerous goods, whether transported or not, it must be reported under a separate category of accidents: accidents involving dangerous goods. Depending on the type and consequences, an accident involving dangerous goods may also be reported
in duplicate as a significant accident. In 2010, Member States reported a total of 54 accidents involving dangerous goods; in 37 of these the transported dangerous goods were released during the accident.

Figure 4 _ Reported number of significant accidents per accident category (2008-2010)

Fatalities and serious injuries

In parallel with the decrease in railway accidents, the total number of casualties, excluding suicides, has fallen steadily in recent years. There were 1256 fatalities reported for the year 2010, a 10% decrease from the previous year. The number of fatalities seems to be decreasing in line with the decrease in the number of significant accidents.

However, the number of passenger casualties (fatalities and serious injuries) was the highest in four years; a total of 416 cases were reported: 62 fatalities and 354 serious injuries. This increase is partly the result of one single occurrence, the major accident in Belgium on 15 September 2010 that led to 18 fatalities and 83 serious injuries.

Over the past four years, for each 10 persons killed, Member States reported some 11 seriously injured persons. The
year 2009 was an exception, with 25 people injured per 20 people killed. Is not possible to identify why the seriousness of accidents was relatively low in 2009, but this seems to have been driven by significant decreases in the number of seriously injured persons across several countries.

Figure 5 shows the number of fatalities in different categories of persons over the period 2008-10. With 750 recorded fatalities in 2010, unauthorised persons represent 60% of all persons killed on railway premises, but their share of fatalities has been slightly decreasing since 2008. The number of level-crossing fatalities of 359 in 2010 is by far the lowest ever recorded on EU railways. This figure represents 29% of railway fatalities, but only 1.2% of roaduser fatalities. Level-crossing safety might therefore be perceived as a marginal problem by the road sector, while it is a key problem for the railway - also because of its impact on railway operation.

Figure 5 _ Number of fatalities per victim category (2008-2010)

Figure 6 clearly shows that the majority of fatalities are unauthorised persons. Level-crossing accidents account for 28% of fatalities, whereas passenger fatalities make up less than 5% of the total number of deaths on railways.

Over and above the number of fatalities, a large number of persons are seriously injured each year on the railways. In 2010, 1236 persons were seriously injured, an increase of 126 over 2009 when an unexpectedly low number of serious injuries were reported (Figure 6).

Figure 6 _ Fatalities per victim category (2008-2010)

The number of seriously injured passengers is large, 354 in 2010; this accounts for 21% of all seriously injured persons. Seriously injured unauthorised persons is the largest category, this accounts for one third of all seriously injured persons while unauthorised persons account for 61% of people killed on the EU railways.

The numbers of injured passengers and unauthorised persons reported for the period 2008-10 show large variations beyond what might be expected from natural fluctuation (Figure 7). As in previous years, a number of NSAs have reported changes in their reporting procedures or the definitions used for data collection.

Figure 7 _ Number of serious injuries per victim category (2008-2010)

The decrease in the number of casualties (fatalities and serious injuries) in recent years is promising, but the development in passenger casualties should be closely monitored to identify whether the numbers reported in

2010 only reflect a natural variation in data or whether they indicate a reversion of the positive downward trend registered in previous years.

The review of methods employed by Member States for establishing whether a fatality is a suicide or not showed that a majority of countries use the Ovenstone criteria $\left({ }^{10}\right)$; a method recommended by the Agency. However, there are some countries where suicide events are not scrutinised by independent authorities.

The societal impact of suicides on railways remains considerable. The consequences are not only trauma for all parties involved, but also significant costs incurred by delays, deployment of rescue services, police investigations, etc. There are now innovative prevention measures available beside the traditional ones, such as fencing in urban areas and camera surveillance in strategic places.

Figure 8 _ Suicide fatalities (2006-2010)

Precursors to accidents

As accidents on railways are rare, the monitoring of less serious events occurring on railways is an essential tool in a proactive SMS. 'Precursors to accidents' are indicators of incidents that under other circumstances could have led to an accident. The indicators reported to the Agency are: broken rails, track buckles, signals passed at danger, wrongside signalling failures, broken wheels and broken axles (Figure 9). Over the period 2008-10, EU countries reported as many as 38500 precursors to accidents; this is a ratio of more than four precursors to one significant accident. However, if we discard accidents to persons caused by rolling stock in motion, the ratio between the precursors and accidents rises to $10: 1$. This unveils the great potential benefit in analysing precursors in the proactive monitoring of railway safety. Until 2010, the reporting of precursors suffered from methodological differences between countries. The 2010 figures should provide a satisfactory description of the reality on EU railways, as Member States have applied common definitions that are sufficiently precise and easy to apply.

Signals passed at danger incidents lead to a wide range of situations such as near-misses, longer braking distances and collisions. When a line is equipped with specialised technical safety equipment, the train is automatically brought to a standstill if a signal at danger is passed; this significantly reduces the risk of serious consequences. More than 7000 signal passed at danger incidents were reported in 2010. Excluding Poland from the EU dataset, because they notified the Agency about a change in
reporting, a relatively stable series of data showing a slight decrease in the number of signals passed at danger since 2008 can be seen.

The broken rail incidents are sensitive to the weather conditions and may not fully reflect the quality of safety management system of IMs. More than 5500 broken rail incidents were reported in 2010, exactly the same number as two years before, in 2008. Three countries in Europe each reported more than 500 broken rails for the year 2010: Hungary (734), Germany (599) and Romania (591).

All track buckles that result in a reduction of speed on the concerned railway line have to be reported by IMs. In 2010, 1775 track buckles were reported by Member States, the highest number for the last three years. Track buckles are much more common in the southern EU countries. Italy and Spain together reported 1079 events in 2010, while all the Scandinavian countries together reported only 97 events. This reflects different climatic conditions for railway operations across Europe.

A total of 525 wrong-side signalling failures were reported in 2010, a comparable number to the 514 failures in 2009. A review of reporting practice in Member States has shown that most countries include all types of technical-based failures in this category, whereas some countries may have also included other specific types of incidents. In both 2009 and 2010, half of the total wrong-side signalling failures were reported by France. Ten countries did not report any wrong-side signalling failures, raising some doubts about the consistency in reporting these precursors.

The reported number of broken wheels and axles (99 incidents in 2010) was relatively low if we consider that all cracks leading to the suppression of service are counted. However, cracks in wheels and axles remain one of most serious incidents, with the potential to lead to major accidents.

In general, the 2010 data on precursors give sound evidence about the extent of safety problems at the EU level, but taken alone they cannot be seen as conclusive.

The data to be reported for year 2011 should provide the basis for validation and further analysis. If reporting of disproportionally high or extremely low numbers of certain incidents by several countries continues to occur, we may need to take remedial action in the future. It is indeed essential for both Member States and the ERA to obtain a correct picture of any trends in the frequency of precursors, given the learning potential to be gained from the periodic analysis of these precursors.

Figure 9 _ Reported number of precursors in 2010

Accident costs

The data on the cost of accidents show a wide variation over time and between countries. It is also evident that Member States continue to have problems in establishing reporting regimes for this set of CSIs.

The revised Annex I to the RSD requires the NSAs to use the willingness-to-pay approach based on estimates of the value for preventing a casualty (VPC) (${ }^{11}$). They can either estimate a national value or use the reference values given in the revised guidance on CSI data reporting $\left({ }^{(22)}\right.$. However,
as Member States may still choose to report accident costs for either all accidents or significant accidents, this can lead to a slightly distorted picture. The revised guidance on reporting CSI data recommends Member States to limit the reporting of accident costs to significant accidents.

In 2010, it was possible for the first time to estimate the economic costs of significant railway accidents for all EU countries. As national values are often estimated on the basis of the reference values recommended by the ERA, they do not necessarily reflect the estimation done at the national level.

[^1]Figure 10 _ Economic impact of significant accidents in 2010 (in million EUR)

The economic impact of significant accidents in 2010 is shown in Figure 10. It has five components: Costs of fatalities, cost of injuries, costs of material damage, costs of damage to the environment and costs of delays. While the first two components are a priori available for all countries, the number of countries providing information on the costs of damage to infrastructure (17), to environment (4) and delays (12) is limited. This is also shown in Figure 10.

By adding together the costs of fatalities and of serious injuries, we obtain a value exceeding EUR 1.6 billion, which gives a broad idea of the overall economic burden of rail casualties in 2010.

Table 4 demonstrates the current problems in the collection of economic indicators. There are still far too many countries that have not supplied data for certain indicators such as the cost of damage to the environment, or the percentage of work passengers among all train passengers - a baseline value needed to estimate the costs of delays of passenger trains and freight trains. For most indicators, each country may report data, either for all accidents, or only for significant accidents, but several Member States provided numbers for both categories of accidents.

While most countries were able to estimate the economic impact of accidents, fatalities and serious injuries, reporting on the indicators of costs for damage (material, environment) was considerably lower. Many countries also have difficulties to establish the share of work passengers $\left({ }^{(13)}\right.$ among all passengers.

Infrastructure

Three CSIs concern railway infrastructure, the first is a measure of the coverage of automatic train protection (ATP) systems on the lines (Figure 11); the second is the number of level crossings (Figure 12), normalised by the length of the network expressed in line kilometres; and the third gives information on the type of protection at level crossings (Figure 13).

ATP $\left({ }^{14}\right)$ is widely considered to be the most effective railway safety measure that infrastructure managers can implement to reduce the risk of collisions on mainline railways (${ }^{15}$). A relatively high density of train protection is typical in countries with high traffic density such as the Netherlands, Italy and Germany. This can be seen in Figure 11.
$\left({ }^{(13)}\right.$ Work passengers are those passengers travelling in connection with their professional activities, excluding commuting passengers.
$\left({ }^{14}\right)$ Automatic train protection (ATP) means a system that enforces obedience to signals and speed restrictions by speed supervision, including automatic stop at signals. Systems where track signalling information is substituted and/or supplemented by cab signalling are included. The part of the definition relating to'automatic stop at signals' is intended to include also automatic stops at conflict points between clearance gauges.
$\left.{ }^{(15}\right)$ Interfleet (2011). Investigating the links between historic accident rate reduction and the underlying changes, Report prepared for ERA in 2011. Report will be available on ERA website in early 2012.

Economic indicators (CSIs)	Number of countries $\left({ }^{(16)}\right.$ reporting CSIs for...		
	Significant / all accidents	Significant accidents	All accidents
Economic impact of accidents	27	26	12
Economic impact of fatalities	27		
National value of preventing fatality	8		
Economic impact of serious injuries	27		
National value of preventing serious injury	7		
Cost of material damage to rolling stock or infrastructure	23	17	11
Cost of damage to the environment	5	4	2
Cost of delays for all trains	16	12	9
Cost of delays for passenger trains	5		
Minutes of delays of passenger trains	17	14	9
Average percentage of work passengers per year	10		
Passenger train km	27		
Passenger km	27		
National value of time for a work assenger of a train (an hour) ($¢$)	5		
National value of time for a non-work passenger of a train (an hour) (ϵ)	5		
Cost of delays for freight trains	8		
Minutes of delays of freight trains	14	11	9
Freight train-km	27		
Freight train tonne-km	24		
National value of time for a tonne freight (an hour) (€)	5		

Table 4 _ Number of European countries submitting required economic CSIs in 2010 (EU-27 and Norway)

The percentage of tracks equipped with an ATP system has seen a slight increase of some 2% from 2009 to $2010\left({ }^{17}\right)$. This was largely driven by progress in ATP implementation achieved by Germany, France and Austria.

There are more than 123000 level crossings in the EU. On average, there are five level crossings per 10 line- km in the EU; only 29 \% of them are active level crossings with userside protection ${ }^{\left({ }^{18}\right)}$. Sweden, Austria, the Czech Republic, the Netherlands and Norway have the highest density of level
crossings in terms of level crossings per line-kilometre. Of these, the Netherlands has the highest ratio of active level crossings to all level crossings. A low ratio of active level crossings to all level crossings is typical for the less densely populated countries (Figure 12). Spain has the lowest average number of level crossings per line-kilometre: there is one level crossing per 5 line-km. Separate statistics on the number of active and passive level crossings were not available for Denmark, Hungary and Slovakia in 2010.

[^2]Figure 11 _ Percentage of tracks equipped with automatic train protection (2008-2010)

Figure 12 _ Number of active and passive level crossings per 10 line-km in 2010

For the first time, detailed statistics are available on the type of protection assured by active level crossings at European level. In Figure 13 the data for 24 countries $\left({ }^{19}\right)$ show that level crossings with automatic user-side warning (typically
flashing lights) are the most common type of active crossings (38%), closely followed by the level crossings with automatic user-side protection and warning (barriers with lights) (34 \%).

Figure 13 _ Breakdown of active level crossings according to the level of protection in 2010 (all countries) (${ }^{19}$)
with automatic user-side protection and
warning, and rail-side protection
with manual user-side warning
with manual user-side protection
with manual user-side protection and warning
with automatic user-side warning
with automatic user-side protection
with automatic user-side protection and warning

Traffic volumes

There are two measures of rail traffic performance that are available for statistical purposes: the number of train-kilometres, shown in Figure 14, and the number of passenger-kilometres, shown in Figure 16. After a 3 \% drop in 2009, the number of train-kilometres further decreased by 1% in 2010 . At the same time, the number of passengerkilometres reported in 2010 is similar to that of 2009: slightly more than 400 billion passenger-km. The average number of passengers per train was about 123 in Europe in 2010; i.e. the ratio of number of passenger-kilometres to passenger train-kilometres.

Germany is the country with the highest number of trainkilometres, accounting alone for one quarter of all trainkilometres in the EU. Nine other countries registered more than 100 million train-km in 2010 (Figure 14). The three highest year-to-year reductions in train-kilometres were registered in Greece (14%), Latvia (11%) and the UK (9 \%). In Belgium and Estonia, although the number of train-kilometres reported in 2010 increased significantly, these values are mainly the result of changes in reporting procedures in both countries.

For the first time, the figures for passenger train-kilometres and freight train kilometres are available separately. These show that passenger trains accounted for 80% of all trainkilometres (783 million) and freight trains for one fifth of all train-kilometres in 2010. The share of passenger trainkilometres exceeded 90% in Denmark, Greece, Ireland, the UK and the Netherlands (Figure 15). Only in Latvia and Lithuania did freight train-kilometres exceed the number of passenger train-kilometres in 2010.

Four countries with the highest passenger volumes (Germany, France, Italy and the UK) together account for two thirds of all passenger-kilometres $\left({ }^{(20)}\right.$. A slight upward trend over the past four years can be observed in Austria, Belgium, Denmark, Germany, the Netherlands, Norway, Sweden, Slovakia and the UK.

Figure 14 _ Number of million train-kilometres (2008-2010)

Figure 15 _ Percentage of passenger train-kilometres among all train-kilometres in 2010 in all countries

Figure 16 _ Number of million passenger-kilometres (2008-2010)

Common safety targets

Common safety targets (CSTs) are quantitative tools intended to monitor whether the current safety levels of the railways in the Member States are at least maintained. In the long term, they could also be helpful in reducing the current differences in railway safety performance. Railway transport is the only mode of transport for which the framework of targets has been prescribed by European legislation. The CSTs are the EU-wide maximum risk values, the national reference values (NRVs) are the maximum risk levels set for individual Member States. The risks are measured by the number of weighted fatalities ${ }^{(21)}$ per train-kilometre. There are risk categories for passengers, employees, level-crossing users, unauthorised persons on railway premises, 'others' and as applied to society as a whole.

Annual assessment of the achievement (first set of CSTs)

In 2011 the Agency carried out a second assessment of the achievement of the first set of CSTs and NRVs. The assessment was based on a four-year time series (2006-09) of data on railway accidents that were delivered to Eurostat by Member States according to Annex H to Regulation (EC) No 2003/91 on rail transport statistics. The assessment was made for six risk categories of CSTs and NRVs using the method set by Commission Decision 2009/460/EC (${ }^{22}$).

The risk category 'others' was excluded from the assessment (as in the first assessment) because of reliability problems with the data. Bulgaria was not included in the assessment because of insufficient data. The results show acceptable railway safety performance in the six risk categories in all countries except Romania, Lithuania and Slovakia. However, as the data for these countries was significantly less reliable than the data provided by the other Member States, the Agency has advised that no specific, regulatory action should be taken by the Commission.

[^3]| Risk category | | CST1 value (\times E-06) | CST2 value (\times E-06) |
| :---: | :---: | :---: | :---: |
| CSTs based on Eurostat data for | | 2004-07 | 2004-09 |
| Risk to passengers | CST 1.1 | 0.25 | 0.17 |
| | CST 1.2 | 0.00201 | 0.00165 |
| Risk to employees | CST 2 | 0.0779 | 0.0779 |
| Risk to level-crossing users | CST 3.1 | 0.743 | 0.710 |
| | CST 3.2 | n.a. | n.a. |
| Risk to 'others' | CST 4 | 0.0185 | 0.0145 |
| Risk to unauthorised persons on railway premises | CST 5 | 2.03 | 2.05 |
| Risk to the whole society | CST 6 | 2.51 | 2.59 |

Table 5 _ Values of the second set of CSTs for different risk categories

Establishment of the second set of CSTs

As required by the RSD, the Agency shall prepare a recommendation on a second set of CSTs and NRVs. The CSTs and NRVs of the second set are based on the six-year time series of data, from 2004 to 2009, that were delivered to Eurostat by Member States. The second set of CSTs and NRVs was calculated with the same method, defined in the CSM on the assessment of the achievement of CSTs. The revisions made by the countries to Eurostat data were taken into account. Compared with the first set of CSTs and NRVs, the only difference is the extension of the period for which data was used for calculations. The calculation method, the
data source and the risk categories are the same as in the first set. The values for the second set of CSTs are shown together with the values of the first set in Table 5.

In general, there were no major changes between the values of the first and second sets of CSTs. For passengers, level-crossing users and 'others', the CSTs established in the second set are somewhat lower than in the first set. The risk levels in these three categories are significantly lower than in the risk category of unauthorised persons on railway premises (mostly trespassers), which in turn strongly influence the risk level for the whole society.

Figure 17 _ CST and NRVs (risks caused) for the passenger - CST 1.1 (second set based on 2004-2009 data)

Figure 18 _ CST and NRVs (risks caused) for the whole society by railway accidents - CST 6 (second set based on 2004-2009 data)

There is no change in risk level as prescribed by the CSTs for employees. For unauthorised persons on railway premises the CST determined in the second set is slightly higher than in the first set.

The changes in the values of the CSTs for specific risk categories suggest that the gap between the safest and least safe country is narrowing; however, the improvement in data quality may also have influenced this result. The higher value of the second set of CSTs for the whole society was 2.59 weighted fatalities per million train-kilometres compared with the 2.51 in the first set, which suggests that at this time conclusive statements should not be drawn from this development.

Figure 17 shows the values of the second set of NRVs for train passengers. Big discrepancies exist between countries, which partly reflect the data quality. For those countries with no passenger fatalities during three consecutive years, the values of the neighbouring country were used instead. These countries (with no passenger fatalities) are marked with an asterisk (*) in the figure.

Figure 18 shows the values of the first and second set of CSTs and NRVs in the category of whole society for all European countries. In 17 out of 26 countries, the value of the NRVs in the second set is lower compared with the first set, indicating slight improvements in safety since 2007. For Romania and Bulgaria, the significant increase in NRVs
could, at least partly, be attributed to the changes in data reporting procedures. The variation in NRVs remains large, despite a slight decrease when compared to the first set.

It should be reminded that any use of the NRVs as a benchmarking tool to compare the safety performance of countries should be made with caution because of the prevailing limitations of the data, even if the data quality has improved somewhat.

From 2012 onwards, the assessment of the achievement of the CSTs and NRVs will be carried out annually. By mid-2015 a revised set of CSTs will be developed, building on the experience gained from the first and second sets of CSTs. This new set will be based solely on the CSI data collected by the Agency and will no longer be reliant on Eurostat railway statistics. The CSM on the assessment of the achievement of safety targets (including the calculation method) will also be revised.

In coming years, the Agency will therefore revise the current assessment method, as it has shown limitations when assessing risk levels in countries where the number of victims in separate categories is (close to) zero in several consecutive years. There are several ways to overcome these methodological limitations, such as the use of statistical modelling or the use of incident data. The proposal for the revision of the assessment method will be delivered in 2015 together with the revised set of CSTs.

ACCIDENT INVESTIGATION

The independent investigation of accidents is the primary responsibility of the NIBs as described in the RSD. NIBs must report the investigation of serious railway accidents to the Agency ${ }_{\left({ }^{23}\right)}$. Each accident is reported to Agency twice: as a notification of the opening of an investigation; and when the final report is sent to the ERA. Both records are available in the Agency's public database of safety documents, ERADIS.

The Agency receives notifications for a majority of the serious accidents investigated, although, the notification of their occurrence is not always sent within one week after the decision to investigate. The compliance of Member States with the requirements for the notification and submission of final reports has been improving over time. In 2011, around one third of notifications to investigate were in fact submitted within one week after the occurrence of the accident. As the Agency does not yet systematically receive information on the starting date of the investigations, the date of the accident occurrence is used as a reference. It should be noted that the time between the occurrence and the decision to investigate can, in certain cases, be longer than a week.

The average number of days between the accident occurrence and the notification to investigate to the Agency has been decreasing over time: 91 days and in 2008; 38 days in 2011.

The final investigation reports should be made public as soon as possible, and normally not later than one year after the date of the occurrence. The average number of months before the final report is submitted to the Agency has also been decreasing over time; from more than 17 months for accidents occurring in 2007 to around 11 months for accidents occurring in 2010.

For some 5% of notified accidents, the Agency had not received the final investigation report by the end of 2011. Some Member States report that this is due to a lack of resources. The average number of days between the accident occurrence and the submission of the final report was 342 days for accidents that occurred in 2010. Table 6 summarises the progress in timely reporting that has been achieved by NIBs.

Year of occurrence	2008	2009	2010	2011
Average number of days between occurrence and notification of decision to investigate ${\left({ }^{24}\right)}^{2}$	91	60	48	38
Average number of days between occurrence and submission of the final investigation report (${ }^{(5)}$)	460	402	342	205

Table 6 _ Average time span between occurrence and accident notification and between occurrence and the submission of the final investigation report to the Agency (in days) for the years 2008-2011

[^4]Accidents and incidents have been reported to the Agency since 2006. Each year the Agency has received notifications of at least 150 occurrences investigated by NIBs. Around 15% of the final investigation reports reached the Agency by the end of the year in which the accident occurred. The majority of final reports are submitted to the Agency within the year following the occurrence of the accident. For example, for occurrences in 2010, 28 were closed and the report submitted to the Agency by the end of 2010. During 2011, the final investigation report was delivered for 163
out of the 219 occurrences in 2010 (red bars in Figure 19). By the end of 2011, 34 out of 221 investigations opened during the year were closed, i.e. 15% of investigations; this is similar to previous years.

During 2011, the ERA has been working closely with the NIBs to complete the delivery of investigation reports to the ERADIS database. This has led to a number of investigations that were opened in 2006-09 being closed.

Figure 19 _ Overview of reporting of accidents and incidents by NIBs to the ERA

Status of investigation by year of occurrence:

2006 Open	2007 Open	2008 Open	2009 Open	2010 Open	2011 Open
2006 Completed	2007 Completed	2008 Completed	2009 Completed	2010 Completed	2011 Completed

Recommendations from investigation reports

In the words of the railway safety directive, the purpose of a safety recommendation is to improve the safety of the rail system, both at national and European level. The role of the NIB is to investigate accidents and incidents; the safety recommendation is a key instrument to transform the lessons learned into measures to improve safety. The role of the NSA is to ensure that the NIB's recommendations are acted upon; in most cases the IM and RU (the end implementers) are responsible for implementing the necessary measures.

In 2011, the ERA took a closer look at the safety recommendations in the investigation reports. The aim was to obtain an overview on how the NIBs apply this instrument; in particular, what is the basis and content of the recommendations. We considered a total of 380 recommendations from 122 investigation reports on serious accidents, submitted to the ERADIS database between mid-2009 and the end of 2010.

The RSD requires the recommendations to be addressed to the NSA; however, some NIBs also address their recommendations to specific organisations, such as IMs or RUs. The analysis showed that just over half of the recommendations (53%) were addressed to the NSA (as foreseen in the RSD), while 36% were addressed directly to RUs and/or IMs (Figure 20). Recommendations were also addressed to other bodies, such as the police, a local municipality or manufacturers (8%). Of concern was the finding that for 3% of the recommendations, no addressee could be identified.

Figure 20 _ Addressee of recommendations

The end implementers of the recommendations were in most cases the RU or the IM (79 \% together) and, for only 7 \% of cases, the NSA together with the RU and IM. For 12% of the recommendations, the end implementer was another entity.

A number of NIBs continue to issue the recommendations directly to the end implementer; in most cases this is the RU or the IM. Because of this, the NSA is frequently unaware of the recommendations and cannot monitor their implementation. When the recommendations are addressed to the NSA, it is then in a position to carry out an analysis of
the feasibility and cost-effectiveness of possible measures and enforce the implementation of the recommendations in a non-discriminatory way. It is therefore essential that the recommendations are addressed to the NSA.

Figure 21 looks at the focus of the recommendations in relation to the three levels of causes as described in the RSD: direct, underlying and root causes. Here it can be seen that the majority of recommendations were focused on either the direct causes (42%) or the underlying causes (48%). Only 18 recommendations (6%) targeted the root causes of an accident.

Almost half of the recommendations focusing on the causes of the accident, dealt with the direct causes. This may reflect insufficient depth of analysis in some accident investigations and/or a lack of expertise and resources for comprehensive accident investigations. In order to improve the safety of the railway system, investigations need to look deeper into the underlying and root causes to mitigate the hazards at the source.

About two thirds of the recommendations specified remedial solutions - these ranged from specific measures that should be introduced or adapted to technical improvements as well as specific changes to rules and procedures; one third of the recommendation focused on the risks identified in the investigation (35%).

Figure 21 _ Focus of recommendations on causes

As a consequence, most recommendations focus on a specific solution instead of addressing the risks that must be managed. It is the responsibility of the NSA together with the end implementer - generally the RU and/or IM - to ensure that effective mitigation measures for the problems and risks identified in the investigation are put in place. Recommendations addressing risks are more effective in enabling the wider lessons to be learnt and so promote proactive safety management.

To summarise, some NIBs still address the recommendations directly to the IMs or RUs and this hinders the NSAs from performing their tasks of supervision and control of the measures to be taken. There is a need to improve accident investigation methods and processes and to look beyond the immediate and direct causes of the accidents. The Agency will continue to support and work together with the NIBs to develop investigation techniques, to facilitate training and to assess the processes put in place by the national investigating bodies.

Level-crossing accidents investigation reports analysis

Level-crossing (LC) accidents account for 24 \% of all events investigated by NIBs and notified to ERA. The ERA has analysed 185 investigation reports on LC accidents available in the ERADIS database on 1 September 2011.

Articles 19(2) and 21(6) of the railway safety directive (RSD) allow the Member States to designate in the national legislation which types of events, in addition to serious accidents, should be investigated by their investigating body. Therefore not all NIBs must investigate level-crossing accidents. Some 90% of all LC accident investigations in the EU have been carried out by eight Member States: the Czech Republic, Denmark, Estonia, France, Finland, Hungary, Spain and the UK.

The detailed evaluation of the available investigation reports shows that the legal basis for the investigations of LC accidents differs between the NIBs: 35 \% of investigations are based on Article 21 (6) of the RSD (particularly in Estonia and Spain), 26 \% on Article 19(1) (mainly in Denmark, Finland, Poland and the UK) and 34% on Article 19(2). The remaining 5% of investigations are carried out according to other national rules and regulations.

Figure 22 _ Types of the LC user involved in accidents investigated by NIBs

In cases we examined, the occupants of passenger cars represent the highest proportion (45%) of LC users involved in LC accidents, followed by heavy-duty-vehicle users (21 \%). Taken together they account for two thirds of road users involved in LC accidents. The proportion of pedestrians involved in LC accidents is also considerable: 21%. Figure 22 gives a detailed breakdown of road users involved in LC accidents.

Slightly more than half (55%) of LC accidents occurred on active $\left.{ }^{(26}\right)$ level crossings typically protected with barriers (most of these were LC accidents in Spain and France), while the remaining 45% occurred on passive (${ }^{27}$) level crossings. At EU level, active level crossings constitute slightly more than half (52%) of all level crossings; however, as active protection is usually provided on level crossings with a higher level of risk, it follows that the risk exposure is probably greater for active level crossings.

[^5]In almost all of the reports on LC accidents that we analysed, the direct causes had been identified (96%); one third of the reports gave the underlying causes and 10% indicated the root causes. Most of the direct causes were related to the behaviour of the level-crossing users; in 16% of the reports the sole cause was attributed to the level-crossing users and there was no further information on the causes of the accident. The main reasons given for LC users for entering the pathway of the train were: distraction, e.g. using a mobile phone, controlling domestic animals, manoeuvring the vehicle, responding to passengers; weather conditions, e.g. vision impaired by sunlight or fog; driver's physiological state, e.g. medical conditions, misuse of drugs or alcohol; obstructions, e.g. vehicle stationary or vehicle stuck between the tracks.

Very often, the underlying causes were related to the technical equipment or the layout of the level crossing. Some underlying causes pointed to insufficiencies in the maintenance of or the technical state of the LC. The root causes were found in the organisation of the work of the RU or IM, safety management systems and the framework of rules and regulations.

A total of 338 recommendations were issued in the 185 reports analysed, almost one third (92) of which were issued by the UK NIB (RAIB). One third of the reports (34 \%) did not contain any specific recommendations. One third of recommendations were solely concerned with the level crossing, on which the accident occurred.

Major railway accidents

Major accidents in 2011

Accidents in which people die usually attract the attention of the media; this raises awareness of both the authorities and the public about the potential vulnerability of the railway transport system. In the following section we summarise some of the serious rail accidents that occurred and were reported to the ERA in 2011. We have included these accidents because of the seriousness of the outcomes and their relevance for EU legislation. The accidents are listed in order of occurrence.

Only a short summary of the information available is presented. More information about these and other accidents can be found in the Agency's database ERADIS (http://pdb.era.europa.eu).

On 29 January 2011, 10 people were killed in a frontal collision of a freight train and a regional passenger train on a single track line between Magdeburg and Halberstadt. The investigation established that the freight train had passed a stop signal and entered the section of track allocated to the oncoming regional train with 32 people on board. This section of the line was not equipped with an automatic train protection system. At the time of the accident it was reported that visibility was poor, because of heavy fog.

The investigation body concluded that the direct cause was related to human performance; however, it was not possible to determine exactly why the freight train had passed the signal at danger.

Eight passengers, the driver and the guard of the passenger train died; 23 people were injured, including the freight train driver.

Image 1_Collision of trains in Hordorf. Source: German NIB.
On impact with the freight train, the passenger train was thrust from the tracks and completely destroyed. The freight train did not derail, but the front (of two) locomotive was badly damaged.

The investigation body has issued two safety recommendations: the installation of automatic train protection equipment on all lines; and the introduction of additional, transitional measures to reduce the likelihood and the consequences of a signal passed at danger until full implementation has been achieved.

Event: Date, time: 2 February 2011, 8:22 Location: Vodňany, Czech Republic Outcomes: 1 fatality, 7 serious and 8 slight injuries

A regional passenger train departed from Vodňany station and collided with a freight train on the open line near the station. One bogie of the passenger train derailed. The investigation showed that the driver of the passenger train left the station without receiving permission to depart. Both train driver and traffic controller (dispatcher) had not followed the prescribed procedure, so the passenger train entered onto an occupied line. The line Číčenice-Volary is not equipped with an automatic train control system.

Image 2 _ Collision of trains in Vodňany. Source: Czech NIB.
The passenger train was travelling at a speed of $47 \mathrm{~km} / \mathrm{h}$ at the time of the collision; at the same time the freight train was reversing backwards along the line. Despite a relatively low impact speed and only minor exterior damage to both trains, 16 passengers were injured by dislodged interior objects. Human performance has played a primary role in three serious accidents and one accident on this line between the years 2004 and 2011 (including this accident).

\square

Event: Freight trains collision
Date, time: 12 February 2011, 04:02
Location: Nokia, Finland
Outcomes: 1 staff fatality
A rear-end collision between two freight trains occurred in the early morning between the stations of Siuro and Suoniemi on the main Tampere to Kokemäki line. The first freight train was on route to the port of Mäntyluoto and had stopped because of a technical failure. A second freight train, coming to assist the first one, collided with the last wagon of the stopped train. The driver of the assisting train was killed on impact. Both the locomotive of the assisting train and the two last wagons of the stopped train were badly damaged. Traffic on the line was suspended for 14 hours.

Analysis of the recorded data showed that the train driver had started emergency braking five seconds before the collision, from a speed of $46 \mathrm{~km} / \mathrm{h}$. At impact the speed of the train was $43 \mathrm{~km} / \mathrm{h}$. The maximum permitted speed of the assisting train was $50 \mathrm{~km} / \mathrm{h}$.

Image 3 _ Collision of freight trains close to Nokia. Source: Finnish NIB.
According to the preliminary results the rear-end collision was caused by incorrect information about the position of the stopped train. This led the driver of the assisting train to approach at too high a speed. The driver of the assisting train was not able to prevent the collision after observing the stopped train because of darkness and track geometry. To prevent similar accidents, the Safety Investigation Authority recommended the systematic use of GPS devices, equipping of rear ends of wagons with reflectors and limiting the speed of assisting trains to $35 \mathrm{~km} / \mathrm{h}$. As normal practice, group calls to all trains should be made in emergency situations.

Event: Level-crossing accident
Date, time: 28 May 2011, 17:30
Location: Lębork-Godętowo, Poland
Outcomes: 2 fatalities, 15 serious injuries

A level-crossing accident involving a semi-trailer truck, fully loaded with bricks occurred at an active level crossing equipped with red light signals. The truck entered the level crossing despite activated level crossing signals - red lights flashing. As a result of the collision, four coaches of the passenger express train travelling from Katowice to Gdynia derailed. The speed of the train was $110 \mathrm{~km} / \mathrm{h}$, well below the maximum permitted speed of $120 \mathrm{~km} / \mathrm{h}$. Visibility and weather condition were good. The railway line is a one-track line.

Event: Fire in rolling stock in motion
Date, time: 16 June 2011, 10:07
Location: Hallingskeid, Norway
Outcomes: No casualties, damage of EUR 25 million
A passenger train from Bergen to Oslo drove into a snow tunnel that was on fire. The train had lost power just before entering Hallingskeid station; the driver noticed the fire at the east end of the snow tunnel and stopped the train before reaching the fire. However, because of the loss of power, it was not possible to back the train out of the tunnel. All passengers were evacuated, and no-one was injured. Material damages were considerable as both the train and the railway infrastructure were completely destroyed. The estimated damage is approximately EUR 25 million.

During the unloading of freight wagons at an unloading platform, seven gondola-type freight wagons used for coal transportation became detached and ran uncontrolled downhill towards Strzelce Krajenskie station, some 2 km away. The set of wagons derailed at the switch and hit the station building. Two occupants of the apartment located on the first floor of the building were killed. Additionally, one person walking along the platform at that time was killed as the wagons derailed.

Image 4 _ LC accident on Lębork - Godętowo line. Source: Polish NIB.
Two people were killed and 14 seriously injured on board the passenger train. The truck driver was also seriously injured. The underlying causes are still being investigated by the railway commission under direct supervision of the NIB Poland. Several safety recommendations have already been issued, including equipping the level crossing with semi-barriers.

Image 5 _ Fire in rolling stock in Hallingskeid. Source: Norwegian NIB.
The investigation is still in progress.
A preliminary report was published on 6 July 2011; it included a safety recommendation addressed to the Norwegian NSA concerning preparedness for rescue work. The final report including safety recommendations will be released within 12 months of the accident date.

Image 6 _ Runaway at Strzelce Krajenskie Wschód. Source: Polish NIB.

The building hit by the train was so badly damaged structurally that it is no longer habitable.

Event: Train derailment
Date, time: 12 August 2011, 16:15
Location: Baby, Poland
Outcomes: 2 fatalities, 18 serious injuries
An intercity train was travelling on the line WarszawaKatowice when the locomotive and four wagons derailed. The accident is under investigation by the Polish NIB (Polish State Commission on Railway Accident Investigation). The initial investigation has found that the speed of the train was about $115 \mathrm{~km} / \mathrm{h}$. The speed limit at that section of the line was $40 \mathrm{~km} / \mathrm{h}$ as the train should change from the left track to the right (normal) track through a switch at the end of a construction area. The left track was in use as the right track was closed because of the reconstruction work on a bridge. The reasons for the high speed of the train are under investigation.

Image 7 _ Train derailment near Baby station. Source: Polish NIB.
The accident occurred on a main line which is only equipped with a limited train protection safety system that does not automatically stop a train exceeding the speed limit.

Image 8 _ Level-crossing accident at Saint-Médard sur Ille station. Source: French NIB.

A similar accident occurred at the same place in 2007 and was investigated by the French NIB who recommended that some improvements be made to the geometry of the road. Unfortunately, these improvements had not yet been carried out.

Investigation of major accidents occurring in 2010

In this section we give an update on some major accidents that we reported on last year. We have included these occurrences either because of the significant consequences of the accident or because they have had a major impact on safety regulations. The accidents are listed in order of occurrence.

Closed investigations of 2010 major accidents

Event	Level-crossing accident
Date, time and location	15 April 2010, 11:32, Chintulovo, Bulgaria
Outcomes	2 fatalities, 1 serious injury
Investigation closed	May 2010
Final report	http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=1839
Main causes	Third party: level crossing user.
Event	Train derailment + consequent collision with obstacle
Date, time and location	28 June 2010, 16:43, Ustí nad Labem, Czech Republic
Outcomes	1 fatality, 7 serious injuries
Investigation closed	28 June 2011
Final report	http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2408
Main causes	Train driven at speed above the permitted limit. The driver was not fit to drive according to the requirements in force.

Event
Date, time and location
Outcomes
Investigation closed
Final report
Main causes

Derailment of a freight train
16 June 2010, 03:07, Braz, Austria
1 serious injury, damage estimated at EUR 6.5 million
9 March 2011
http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2436
Technical fault in braking valve.

Event	Accident to unauthorised persons
Date, time and location	23 June 2010, 23:23, Platja de Castelldefels, Spain
Outcomes	12 fatalities, 10 serious injuries
Investigation closed	31 January 2011
Final report	http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2184
Main causes	The victims crossed the tracks at an unauthorised place, unaware of the approach of the train.

Event	Trains collision
Date, time and location	13 July 2010, 9:12, Kępice-Korzybie, Poland
Outcomes	13 serious injuries, considerable material damage
Investigation closed	5 July 2011
Final report	http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2387
Main causes	SPAD leading to departure from the station without authorisation. Several procedures were not followed.
Event	Freight train collision and fire
Date, time and location	8 November 2010, 05:30, Białystok, Poland
Outcomes	No personal injuries, considerable material damage
Investigation closed	December 2011
Final report	http://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2637
Main causes	Operational procedures were not followed.
Event	Train collision
Date, time and location	25 July 2010, 23:30, Stavoren, Netherlands
Outcomes	No injury, considerable damage
Investigation closed	September 2010
Final report	https://pdb.era.europa.eu/safety_docs/naib/view.aspx?id=2575
Main causes	Failure to obey the stop signal (ATP and driver failures).

Open investigations of 2010 major accidents

The Agency has not yet received the final reports on the investigations of several major accidents that occurred in 2010 and were listed in the previous year report. By the end of 2011, the investigations into the following accidents were still open: Head-on trains collision at Buizingen (BE) with 18 fatalities and the train collision at Spišská Nová Ves (SK) with three fatalities. Similarly, the investigation of the railway accident in Viareggio (IT) that occurred in 2009 and led to the death of 32 persons has not yet been concluded (by the end of 2011). The Agency is aware of the complex nature of these cases; however, we are concerned about the length of time required to finalise these investigations.

MANAGING SAFETY

Introduction

The RSD foresees a number of concrete instruments for effective railway safety management. They include EU regulatory framework, safety certification and safety assessment.

Safety regulation

In several Member States, the safety regulatory framework is still undergoing significant development. The evaluation of the national measures transposing the RSD in the Member States that the Agency is carrying out is at an advanced stage. Some of the major remarks relate to the setting-up and independence of the NSAs and NIBs, the development of the safety management system, the Part A and Part B safety certificates and the investigation of accidents, including the follow-up of investigation recommendations. While these findings are quite serious, it is important to keep in mind that some Member States have not yet completed their notifications of national legislation, which were the basis for the evaluation.

The transparency and availability of the national safety rules used by the RUs operating on the railway network is a prerequisite for opening the market without creating safety barriers. The RSD requires Member States to notify the Commission of new and amended national safety rules (${ }^{28}$). The Agency evaluates these notifications in the Commission's public database, NOTIF-IT. The Commission monitors the introduction of new national rules in order to prevent new barriers to market opening.

The long-term objective of the railway safety directive is the gradual reduction of national rules in order to move towards a more harmonised European approach to safety.

As a considerable number of common requirements have now been enacted at EU level, it is timely to review and clarify the scope that remains for national safety rules in the Member States. Also, as substantiated by Agency reports and feedback from the sector, there is a need to increase transparency in how national safety rules are established, published and made available. These two issues are being considered by the Task Force on National Safety Rules set up under the auspices of the Railway Interoperability and Safety Committee (RISC) in December 2010. The Task Force will develop guidance with examples of good practice by the end of 2012.

Safety certification

The RSD requires RUs to hold a safety certificate issued by the NSA to access the railway infrastructure. Similarly, IMs must obtain a safety authorisation from the NSA to manage and operate a rail infrastructure in a Member State. The NSA assesses the conformity of the SMS of RUs and IMs applying for safety certification or safety authorisation against the requirements set out in the Commission Regulation (EU) 1158/2010 and Commission Regulation (EU) 1169/2010. For the RUs, this leads to a Part A safety certificate, which is valid throughout the EU. However, the RUs will also need to obtain Part B certificates for each Member State in which they operate as this certificate relates to specific requirements for safe operation on the relevant network.

A total of 609 safety certificates (Parts A and B together), issued in accordance with the RSD had been validated by the ERA and given the status 'active' in the ERADIS database by the end of November 2011. This figure includes all new, renewed, updated or amended (but not revoked) safety certificates.

Figure 23 shows the number of safety certificates issued by NSAs in the Member States. The NSAs in Romania, the Czech Republic and Poland have issued the most certificates, while in some countries with relatively high levels of train-kilometres, fewer certificates have been issued. For all Member States, safety certificates issued under Directive 2001/14/EC must have been replaced by 1 January 2011 with safety certificates issued according to the RSD and Commission Regulation (EC) No 653/2007. Figure 23 already may help to provide a picture of the size of the railway market within the EU.

It is also evident that there is an imbalance between the number of Part A safety certificates issued compared with the number of Part B safety certificates. In some Member States, more Part B certificates have been issued than Part A certificates. Unless the railway undertaking is operating across borders, then the number of Part A certificates issued should be the same as the number of Part B certificates. Possibly this is the result of a misinterpretation of the RSD; in some Member States, Part B certificates may have been issued for specific lines or even a part of a line rather than for the 'relevant network'. In some cases, Member States have not notified the ERA of the number of Part B certificates issued, because they are unaware of the change in reporting brought in by Commission Regulation (EC) No 653/2007. This may present problems on the accuracy and comprehensiveness of the safety certification data in the ERADIS database, which is an important tool for the monitoring of railway safety and access to the market for railway undertakings within the EU.

Figure 23 _ Number of validated safety certificates
Parts A and B per Member State (28 November 2011)

Figure 24 _ Number of validated safety certificates Parts A and B, international operations only, per type of service (28 November 2011)

Freight transport (both including and excluding dangerous goods) and passenger transport (excluding high-speed services) are the main services delivered by the railway undertakings within the EU. Figure 24 shows that the major trend is in the international transport of dangerous goods. Shunting services are limited to domestic use.

The relatively low number of Part B safety certificates issued for international passenger operators do not appear to accurately reflect the actual number of such operators. Part B safety certificates issued to date to RUs delivering international passenger transport services (other from where their respective Part A was obtained) are granted by the following Member States: Austria for RTS Rail Transport Service GmbH and DB Regio AG; France and Belgium for Eurostar International Ltd; Germany for Salzburg AG; Norway for SJ AB; Spain for SNCF; and the Netherlands for DB Regio NRW GmbH and Rurtalbahn Benelux BV.

LOOKING FORWARD

In 2011, safety performance on the EU railways continued to improve. However, changes to reporting procedures in some Member States make it difficult to draw definitive conclusions on safety developments. In 2012, it will be possible to verify whether the developments are stable and that safety is improving. During 2012, there will also be a second assessment of the achievement of the second set of CSTs, which will enable the Agency to validate the findings presented in this report.

The ERA will finalise the development of measures required by the RSD and the Agency regulation $\left({ }^{(29)}\right.$. This will lead to a change in the role of the Agency: the future focus of our work will be on making the existing regulatory framework function better. We have already started to work towards this objective by setting up the NSA cross-audit programme, the planned assessments of the NIBs, the development of guidance and a training programme for accident investigators, the evaluation of the national transpositions of the European directives - the railway safety directive and the interoperability directive (2008/57/EC) - and the evaluation of the notification of national safety rules. Now the Agency and in particular the Safety Unit will progress
step by step from the developmental phase towards a monitoring, disseminating and coordinating role.

In 2012, the Agency will continue its work with developing and monitoring the implementation of safety management systems in the sector organisations. The effective implementation of SMSs is the key to safe and responsible operation in a changing and open market. The Agency will work closely with the sector organisations to collect information on the implementation of SMSs and to determine how we can support the development of a safety culture to maintain and improve railway safety, for example through the Agency seminars organised in the Member States on SMSs and on the common safety method for conformity assessment.

The Agency will continue to contribute to the Instrument for Pre-Accession (IPA) project, where we provide technical assistance to candidate and potential candidate countries in the western Balkans and Turkey in order to prepare them for active participation in the Agency's activities, once their respective transport policy chapters have been closed.

[^6]
ANNEX 1 _ COMMON SAFETY INDICATORS

Content	
Table No	Name
1	Fatalities by category of person
2	Serious injuries by category of person
3	Fatalities by type of accident and person category 2010
4	Serious injuries by type of accident and person category 2010
5	Total and relative number of suicides
6	Dangerous good accidents in 2010
7	Number of accidents by type of accidents
8	Number of precursors to accidents
9	Economic impact of accidents
10	Technical safety of infrastructure and its implementation
11	Level-crossings by type
12	Management of safety - number of audits planned and conducted
13	Traffic and infrastructure data
14	Reference data for economic indicators

Legend

Natural variation due to a single accidentChange of definition or reporting procedureUnauthorised persons
Unknown reason for variationFurther detailed explanation available

	Fable 1 _ Fat	alitie	s by	categ	y	per																									
ID	Victim types - fatalities	Years	AT	BE	BG	CT	CZ	DE	DK	EE	EL	ES	FI	FR	HU	IE	IT	LT	LU	LV	NL	NO	PL	PT	RO	SE	SI	SK	UK	Total	Total EU
PK00	Passengers	2007	1	9	2	0	0	3	0	0	0	13	0	9	14	0	5	0		0	0	0	9	1	0	0	0	1	3	70	70
		2008	2	2	12	0	13	1	0	0	1	5	0	10	10	0	4	0		0	1	0	8	3	15	0	0	2	0	89	89
		2009	1	2	1	0	1	3	0	0	0	2	0	7	0	0	5	0	0	1	0	0	8	0	4	0	0	2	0	37	37
		2010	0	18	0	0	2	0	0	0	1	15	0	2	3	0	7	0	0	0	0	0	7	1	4	2	0	0	0	62	62
SKOO	Employees	2007	3	3	1	0	1	9	0	1	0	0	1	2	3	0	3	0		1	0	0	3	5	0	0	0	0	2	38	38
		2008	2	1	1	0	4	8	0	0	2	1	0	2	1	0	5	2		2	0	0	1	1	4	0	0	0	1	38	38
		2009	0	1	1	0	0	4	1	2	1	0	1	1	1	0	5	1	1	1	1	0	1	1	3	0	1	0	1	29	29
		2010	0	1	2	0	5	8	0	1	0	3	1	1	2	0	5	0	0	0	0	0	6	1	4	2	0	2	0	44	44
LK00	Level-crossing users	2007	33	19	5	0	23	67	5	6	5	19	10	38	26	1	16	6		4	19	0	81	20	55	9	9	15	13	504	504
		2008	17	10	4	0	24	50	3	1	6	15	8	38	42	1	6	6		6	18	0	39	15	38	4	4	11	14	380	380
		2009	12	8	4	0	21	41	3	3	13	16	11	36	28	0	5	8	1	2	13	2	72	17	40	6	7	25	13	407	405
		2010	13	9	8	0	34	44	4	2	12	9	8	29	30	2	11	5	0	5	8	3	54	11	35	7	6	9	4	362	359
UK00	Unauthorised persons	2007	14	7	19	0	1	88	3	0	13	33	7	20	35	1	44	30		21	1	2	260	32	131	14	8	40	33	857	855
		2008	18	8	27	0	3	78	8	7	8	23	13	40	62	2	49	32		15	1	1	260	23	151	9	9	41	41	929	928
		2009	19	5	22	0	4	103	11	5	8	13	2	31	63	1	36	24	0	8	0	3	284	14	103	13	3	44	36	855	852
		2010	17	5	6	0	6	80	6	9	16	10	4	37	47	1	48	26	0	13	0	3	216	9	96	31	7	44	16	753	750
OKOO	Other persons	2007	1	0	0	0	0	13	0	7	0	0	0	13	2	0	0	0		2	0	0	4	0	0	0	0	1	7	50	50
		2008	0	0	0	0	0	27	1	0	0	2	0	4	0	0	0	0		6	0	0	0	0	0	0	0	2	2	44	44
		2009	2	0	0	0	0	19	0	0	0	0	0	1	0	0	30	0	1	5	0	1	0	0	0	0	0	1	3	63	62
		2010	0	11	0	0	1	14	0	0	0	0	0	0	0	0	0	0	0	4	2	3	0	0	0	0	1	3	5	44	41
TK00	Total persons	2007	52	38	27	0	25	180	8	14	18	65	18	82	80	2	68	36		28	20	2	357	58	186	23	17	57	58	1519	1517
		2008	39	21	44	0	44	164	12	8	17	46	21	94	115	3	64	40		29	20	1	308	42	208	13	13	56	58	1480	1479
		2009	34	16	28	0	26	170	15	10	22	31	14	76	92	1	81	33	3	17	14	6	365	32	150	19	11	72	53	1391	1385
		2010	30	44	16	0	48	146	10	12	29	37	13	69	82	3	71	31	0	22	10	9	283	22	139	42	14	58	25	1265	1256
R01	No of train-km (million)	2007	155.0	103.6	36.0	6.5	152.9	1048.7	78.7	7.6	19.9	185.6	52.6	529.5	114.0	16.8	370.0	15.0		18.6	140.0	47.4	223.0	41.0	96.3	134.3	19.2	51.0	521.3	4184	4137
		2008	158.4	92.9	35.1	5.5	175.0	1043.5	82.0	7.1	21.2	192.8	53.3	541.0	109.0		366.9	15.8		19.5	139.0	46.8	224.4	41.8	96.1	138.2	20.1	49.3	549.1	4224	4177
		2009	152.3	91.9	31.5	5.7	163.2	1002.9	82.2	6.8	19.6	188.1	50.0	504.0	106.3		350.5	14.1	8.1	18.7	132.0	43.3	208.6	40.6	88.5	143.1	18.2	45.0	568.6	4084	4040
		2010	156.1	98.0	30.6	5.7	160.2	1032.0	83.1	8.9	17.0	186.7	51.0	484.8	97.4	17.7	324.0	14.1	8.2	16.6	146.2	46.5	219.1	40.0	93.5	141.3	18.8	47.5	520.0	4065	4019
R02	No of passenger-km (million)	2007	9149	9932	2423	1	6907	79100	6353	274	1930	20584	3778	78740	10080	2007	49090	409		983	16400	2860	19374	3990	6724	10296	812	2148	50474	394817	391958
		2008	10600	10403	2334		6659	82500	6474	274	1657	22074	4052	87000	8288	1976	49408	397		951	16500	2860	20144	4154	6956	10838	834	2279	53002	412613	409753
		2009	10500	10493	2144		6472	81612	6389	232	1414	21729	3876	83260	7945	1681	46426	357	333	747	16800	2996	18577	4152	6177	11216	840	2247	52765	401379	398383
		2010	10700	10493	2100	497	6553	83702	6587	456	1144	20978	3959	81750	7666	1678	43474	373	350	741	16621	3153	17800	4111	5500	11036	813	2291	55831	400355	397202

둥
$\xlongequal{\cong}$
\approx
\bar{n}

	ble 3 _ Fataliti	es by type of ac	iden				ateg	ory	2010																						
ID	Accident types	Victim types - fatalities	AT	BE	BG	CT	CZ	DE	DK	EE	EL	ES	FI	FR	HU	IE	IT	LT	LU	LV	NL	NO	PL	PT	R0	SE	SI	SK	UK	Total	Total EU
TK01	Collisions of trains	Total	0	19	0	0	1	0	0	1	1	2	0	0	1	1	0	0	0	0	0	3	0	0	3	1	0	3	0	36	33
PK01		Passengers	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	19	19
SK01		Employees	0	1	0	0	0	0	0	1	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	6	6
LK01		Level-crossing users	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
UK01		Unauthorised persons	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	4	4
OK01		Other persons	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	2	0	6	3
TK02	Derailments of trains	Total	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
PK02		Passengers	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
SKO2		Employees	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
LK02		Level-crossing users	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UK02		Unauthorised persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OKO2		Other persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TK03	Level-crossing	Total	13	18	9	0	34	45	4	2	12	10	8	27	30	0	11	5	0	5	8	3	55	11	35	7	10	9	4	375	372
PK03	accidents	Passengers	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
SK03		Employees	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3	3
LK03		Level-crossing users	13	9	8	0	34	44	4	2	12	9	8	27	30	0	11	5	0	5	8	3	54	11	35	7	6	9	4	358	355
UK03		Unauthorised persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	4
OK03		Other persons	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9
TK04	Accidents to persons	Total	15	7	7	0	12	101	6	9	15	25	5	37	49	2	60	26	0	17	2	3	228	11	97	34	3	46	21	817	835
PK04	caused by rolling	Passengers	0	0	0	0	2	0	0	0	0	14	0	2	3	0	7	0	0	0	0	0	7	1	4	1	0	0	0	41	41
SK04	stock in motion	Employees	0	0	1	0	4	7	0	0	0	1	1	0	0	0	5	0	0	0	0	0	5	1	1	2	0	1	0	29	29
LK04		Level-crossing users	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
UK04		Unauthorised persons	15	5	6	0	6	80	6	9	15	10	4	34	46	1	48	26	0	13	0	3	216	9	92	31	3	44	16	722	735
OK04		Other persons	0	2	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	1	5	23	28
TK05	Fires in rolling stock	Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	2
PK05		Passengers	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SK05		Employees	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
LK05		Level-crossing users	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
UK05		Unauthorised persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OK05		Other persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TK06	Other accidents	Total	2	0	0	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	0	0	0	3	0	1	0	0	12	12
PK06		Passengers	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SK06		Employees	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	4	4
LK06		Level-crossing users	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UK06		Unauthorised persons	2	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	7	7
OK06		Other persons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1

00000000000
$\infty 0$ \qquad －

$$
00
$$

\qquad000000000000으 00 으으

| AT |
| ---: | :--- |
| 3 |
| 2 |
| 1 |
| 0 |
| 0 |
| 0 |
| 2 |
| 0 |
| 2 |
| 0 |
| 0 |
| 0 |
| 23 |
| 0 |
| 0 |
| 23 |
| 0 |
| 0 |
| 14 |
| 2 |
| 5 |
| 0 |
| 7 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

Collisions of trains	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons
Derailments of trains	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons
Level－crossing accidents	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons
Accidents to persons caused by rolling stock in motion	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons
Fires in rolling stock	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons
Other accidents	Total
	Passengers
	Employees
	Level－crossing users
	Unauthorised persons
	Other persons

云

	ble 5	tal	d	elativ	e num	be	ui	uicides																							
10	Category	Year											Fl				IT														Total Ful
N07	Total No of suicides	2007	113	94	39	0	150	150706	32	0	4	188	54	344	111	5	138	0		10	193	8	28	52	24	78	14	48	197	2630	2622
		2008	93		27	0	160	$150 \quad 714$	24	1	1	174	52	289	111	7	137	0		9	164	7	29	50	29	71	20	58	202	2429	2422
		2009	101	69	19	0	185	1858	32	0	3	163	62	337	139	2	111	2	4	10	197	8	25	69	25	67	10	56	210	2781	2773
		2010	90	84	18	0	198	8899	23	0	2	124	44	328	121	6	109	4	3	13	201	7	47	51	23	68	15	48	224	2750	2743
N17	Relative to train-km, No of suicides	2007	0.729	0.907	1.082	0.000	0.981	20.673	0.407	0.000	0.201	1.013	1.027	0.650	0.974	0.297	0.373	0.000		0.538	1.379	0.169	0.126	1.269	0.249	0.581	0.731	0.941	0.378		
		2008	0.587		0.770	0.000	0.914	140.684	0.293	0.140	0.047	0.903	0.976	0.534	1.018		0.373	0.000		0.461	1.180	0.149	0.129	1.197	0.302	0.514	0.995	1.176	0.368		
		2009	0.663	0.751	0.603	0.000	1.134	1340.872	0.390	0.000	0.153	0.866	1.240	0.669	1.308		0.317	0.142	0.496	0.534	1.492	0.185	0.120	1.700	0.282	0.468	0.549	1.246	0.369		
		2010	0.577	0.857	0.588		1.236	0.871	0.277	0.000	0.118	0.664	0.863	0.677	1.242	0.339	0.336	0.283	0.368	0.782	1.375	0.151	0.215	1.275	0.246	0.481	0.796	1.010	0.431		
	Train-km	2007	155.0	103.6	36.0	6.5	152.9	. 1048.7	78.7	7.6	19.9	185.6	52.6	529.5	114.0	16.8	370.0	15.0		18.6	140.0	47.4	223.0	41.0	96.3	134.3	19.2	51.0	521.3	4184	4137
		2008	158.4	92.9	35.1	5.5		. 1043.5	82.0	7.1	21.2	192.8	53.3	541.0	109.0		366.9	15.8		19.5	139.0	46.8	224.4	41.8	96.1	138.2	20.1	49.3	549.1	4224	4177
		2009	152.3	91.9	31.5	5.7		. 1002.9	82.2	6.8	19.6	188.1	50.0	504.0	106.3		350.5	14.1	8.1	18.7	132.0	43.3	208.6	40.6	88.5	143.1	18.2	45.0	568.6	4084	4040
		2010	156.1	98.0	30.6	5.7	160.2	. 1032.0	83.1	8.9	17.0	186.7	51.0	484.8	97.4	17.7	324.0	14.1	8.2	16.6	146.2	46.5	219.1	40.0	93.5	141.3	18.8	47.5	520.0	4065	4019

ID	Category	Year	AT	BE	BG	CT	CZ	DE	DK	EE	El	ES	Fl	FR	HU	IE	IT	LT	LU	LV	NL	NO	PL	PT	RO	SE	SI	SK	UK	Total	$\begin{aligned} & \text { Total } \\ & \text { Eu } \end{aligned}$
N18	Total No of accidents involving at least one railway vehicle transporting dangerous goods	2010	0	2	0	0	0	4	2	0	0	1	0	0	0	0	5	3	0	2	0	0	32	1	2	0	0	0	0	54	54
N19	No of accidents involving at least one railway vehicle transporting dangerous goods in which dangerous goods are NOT released	2010	0	0	0	0	0	2	1	0	0	1	0		0	0	0	3	0	0	0	0	8	1	1	0	0	0	0	17	17
N20	No of accidents involving at least one railway vehicle transporting dangerous goods in which dangerous goods ARE released	2010	0	2	0	0	0	2	1	0	0	0	0		0	0	5	0	0	2	0	0	24	0	1	0	0	0	0	37	37

in ib ∞ a $\times \underset{m}{i n} \bar{m}$
\qquad 첵 우 므 スૂ ঞo

| N04 | Accidents to persons
 caused by rolling stock
 in motion |
| :--- | :--- | :--- |
| N05 | Fires in rolling stock |

¢

ID	Precursors to accidents	Year	AT	BE	BG	CT	CZ	DE	DK	EE	EL	ES	FI	FR	HU	IE	IT	LT	LU	LV	NL	N0	PL	PT	R0	SE	SI	SK	UK	Total	Total EU
101	Broken rails	2007		98	92	13	21	407	32	7	269	54	21	323	654	1	430	62		5	31	10	2484	39	319	187	57	5	192	5813	5803
		2008		281	67	8	4	536	14	7	223	70	19	309	716	3	84	1		4	31	36	2396	33	380	218	79	10	170	5699	5663
		2009		30	185	3	15	591	40	16	172	103	25	294	10	4	404	1	12	10	58	44	1506	35	414	235	94	15	146	4462	4418
		2010	211	67	69	15	5	599	49	9	143	97	50	379	734	5	368	4	1	7	111	101	1461	50	591	62	114	165	197	5664	5563
102	Trackbuckles	2007		0	25	0	0	68	6	0		171	7	177	4	1	3113	40		1	13	14	17	40	3	102	11	2	5	3820	3806
		2008		0	10	0	0	40	8	0	110	218	3	194	8	0	41	0		3	8	17	19	37	0	87	16	0	16	835	818
		2009		0	6	0	0	38	2	111	89	415	1	163	0	3	677	0	7	4	9	37	22	44	3	115	8	1	28	1783	1746
		2010	172	5	1	0	0	71	4	0	44	506	14	160	8	0	573	1	1	0	14	11	23	56	0	68	16	9	29	1786	1775
103	Wrong-side signalling failures	2007	7	1	10	0	0	0	193	0	0	5		277	0	1	0	245		0		0	0	0	0	6		6	550	1301	1301
		2008	3	1	13	0	0	0	119	0	0	6	2	277	8	2	2	39		0	18	1	52	0	0	12		2	901	1458	1457
		2009	0	2	0	0	0	0	43	75	0	4	0	287	0	2	0	44	2	0	18	0	21	0	0	9	0	1	6	514	514
		2010	4	2	0	0	0	0	61	23	0	6	0	321	0	0	1	0	3	1	17	2	16	1	1	1	0	57	10	527	525
104	Signals passed at danger	2007	12	81	15	5	26	727	568	2	1	93	22	112	12	31	15	60		2	275	73	4013	20	425	217	16	79	324	7226	7153
		2008	16	97	12	3	26	760	510	2	1	111	30	124	8	22	20	3		5	240	70	2653	24	396	275	15	75	316	5814	5744
		2009	20	75	3	4	39	355	531	1	5	94	20	133	7	17	15	7	1	4	214	105	13	12	432	362	12	75	260	2816	2711
		2010	11	104	0	3	78	352	484	0	1	87	35	112	10	14	10	2	4	6	169	116	4377	6	571	341	10	22	304	7229	7113
105	Broken wheels	2007	2	1	17	0	0	6	22	0	1	0		2	0	0	0	0		9	0	39	66	0	2	2	0	1	0	170	131
		2008	0	1	13	0	0	1	7	0	1	0	0	0	0	0	0	1		2	0	6	57	0	0	1	0	0	0	90	84
		2009	0	0	0	0	1	2	14	0	0	0	0	0	1	0	1	9	0	1	0	0	105	0	0	0	0	0	0	134	134
		2010	0	0	1	0	2	4	13	0	1	0	0	2	1	0	5	0	0	0	0	5	23	0	0	4	0	0	0	61	56
106	Broken Axles	2007	3	0	29	0	0	4	8	0	0	0		0	1	0	1	28		1	0	0	22	1	2	3	0	0	0	103	103
		2008	3	0	7	0	0	9	9	0	0	0	0	1	0	1	2	0		0	1	2	67	0	2	1	0	0	0	105	103
		2009	1	0	0	1	0	1	12	0	0	1	0	2	0	0	4	0	0	0	1	3	12	0	1	2	0	0	0	41	38
		2010	0	0	29	0	1	4		0	0	0	0	1	1	0	1	0	0	0	0	0	3	1	0	1	0	0	1	43	43
R01	No of train-km (million)	2007	155.0	103.6	36.0	6.5	152.9	1048.7	78.7	7.6	19.9	185.6	52.6	529.5	114.0	16.8	370.0	15.0		18.6	140.0	47.4	223.0	41.0	96.3	134.3	19.2	51.0	521.3	4184	4137
		2008	158.4	92.9	35.1	5.5	175.0	1043.5	82.0	7.1	21.2	192.8	53.3	541.0	109.0		366.9	15.8		19.5	139.0	46.8	224.4	41.8	96.1	138.2	20.1	49.3	549.1	4224	4177
		2009	152.3	91.9	31.5	5.7	163.2	1002.9	82.2	6.8	19.6	188.1	50.0	504.0	106.3		350.5	14.1	8.1	18.7	132.0	43.3	208.6	40.6	88.5	143.1	18.2	45.0	568.6	4084	4040
		2010	156.1	98.0	30.6	5.7	160.2	1032.0	83.1	8.9	17.0	186.7	51.0	484.8	97.4	17.7	324.0	14.1	8.2	16.6	146.2	46.5	219.1	40.0	93.5	141.3	18.8	47.5	520.0	4065	4019

 2
0
0
0
0
\square

 $\begin{array}{lllllllllllll}4731 & 6700 & 4080 & 28673 & 3528 & 20348 & 16075 & 2192 & 4638 & 31534 & 327 & 997 & 323917\end{array}$

Table 11 ＿Level－crossings by type

10	Level－crossing types	Year	${ }^{\text {at }}$	BE	BG	c	Cz	DE	DK	EE	EL	Es	Fl	FR	Hu	IE	IT	LT	LU	LV	NL	No	PL	PT	RO	SE	SI	SK	UK	Total	Total EU
T06	Active LS	2010	1935	1611	669	0	3818	10313	800	164	817	971	817	13110	5956	212	4583	384	106	458	2006	3611	5388	464	1632	3334	317	0	1660	65136	61525
T07	with automatic user－ side warning	2010	797	218	0	0	2324	999	800	135	2	472	90	13110	0	3	60	306	3	346	70	1	1249	35	871	918	29		288	23126	23125
T08	with automatic user－ side protection	2010	0	0	131	0	0	1051		0	0	0	0		0	2	4	9	0	0	116	119	0	0	0	31	0		0	1463	1344
T09	with automatic user－ side protection and warning	2010	878	1297	0	0	1072	6269		29	0	0	727		2820	12	4218	10	82	86	1501		362	340	218	2280	256		494	22951	22951
T10	with automatic user－ side protection and warning，and rail－side protection	2010	29	0	354	0	0	1100		0	767	480	0		0	191	294	15	0	0	3	349	395	0	0	19	0		55	4051	3702
T11	with manual user－side warning	2010	223	71	0	0	0	325		0	0	0	0		0	0	0	33	18	20	297	3142	56	2	0	62	0		0	4249	1107
T12	with manual user－side protection	2010	8	0	184	0	422	436		0	0	2	0		0	4	3	6	2	3			1806	70	533	5	0		419	3903	3903
T13	with manual user－side protection and warning	2010	0	25	0	0	0	133		0	48	17	0		3136	0	4	5	1	3	19		1520	17	10	19	32		404	5393	5393
T14	Passive L／s	2010	3207	291	146	0	4673	7080	667	171	488	1551	3016	5254	0	838	1100	154	32	155	622	0	8738	643	3537	8036	615		4987	56001	5600

Total Total

⿷⿱山⿸⿻口丿乚力 \square
 \circ 0 8

Table 13 _ Traffic and infrastructure data																															
ID	Reference data	Year	AT	BE	BG	CT	CZ	DE	DK	EE	EL	ES	FI	FR	HU	IE	IT	LT	LU	LV	NL	NO	PL	PT	RO	SE	SI	SK	UK	Total	$\begin{gathered} \text { Total } \\ \text { EU } \end{gathered}$
R01	Total No of train-km	2007	155.0	103.6	36.0	6.5	152.9	1048.7	78.7	7.6	19.9	185.6	52.6	529.5	114.0	16.8	370.0	15.0		18.6	140.0	47.4	223.0	41.0	96.3	134.3	19.2	51.0	521.3	4184	4137
		2008	158.4	92.9	35.1	5.5	175.0	1043.5	82.0	7.1	21.2	192.8	53.3	541.0	109.0		366.9	15.8		19.5	139.0	46.8	224.4	41.8	96.1	138.2	20.1	49.3	549.1	4224	4177
		2009	152.3	91.9	31.5	5.7	163.2	1002.9	82.2	6.8	19.6	188.1	50.0	504.0	106.3		350.5	14.1	8.1	18.7	132.0	43.3	208.6	40.6	88.5	143.1	18.2	45.0	568.6	4084	4040
		2010	156.1	98.0	30.6	5.7	160.2	1032.0	83.1	8.9	17.0	186.7	51.0	484.8	97.4	17.7	324.0	14.1	8.2	16.6	146.2	46.5	219.1	40.0	93.5	141.3	18.8	47.5	520.0	4065	4019
R02	No of passenger-km	2007	9149	9932	2423	1	6907	79100	6353	274	1930	20584	3778	78740	10080	2007	49090	409		983	16400	2860	19374	3990	6724	10296	812	2148	50474	394817	391958
		2008	10600	10403	2334		6659	82500	6474	274	1657	22074	4052	87000	8288	1976	49408	397		951	16500	2860	20144	4154	6956	10838	834	2279	53002	412613	409753
		2009	10500	10493	2144		6472	81612	6389	232	1414	21729	3876	83260	7945	1681	46426	357	333	747	16800	2996	18577	4152	6177	11216	840	2247	52765	401379	398383
		2010	10700	10493	2100	497	6553	83702	6587	456	1144	20978	3959	81750	7666	1678	43474	373	350	741	16621	3153	17800	4111	5500	11036	813	2291	55831	400355	397202
R05	No of passengertrain km	2007										145.1																		145	145
		2008										155.4																		155	155
		2009										160.5															11.7		531.6	704	704
		2010	104.7	81.0	23.1	1.0	123.3	777.0	79.4	4.8	16.0	158.2	35.0	410.0	85.3	16.6	280.3	5.0	7.3	6.2	134.0	35.0	145.6	32.5	70.7	94.4	10.7	33.0	485.3	3256	3221
R06	No of freight-train km	2007										37.4																		37	37
		2008										34.4																		34	34
		2009										25.1															6.5		37.0	69	69
		2010	44.7	16.0	6.5	0.1	36.9	255.0	3.7	4.2	1.0	25.8	16.0	74.7	12.2	0.3	43.6	8.9	0.9	10.4	12.0	8.7	73.4	7.5	22.8	40.6	8.1	14.5	34.7	783	775
R04	No of other-train-km	2007										3.0																		3	3
		2008										2.9																		3	3
		2009										2.5																		3	3
		2010	6.7	1.0	1.0	4.5	0.0	0.0		0.0	0.0	2.7	0.0		0.0	0.8	0.0	0.2		0.0	0.2	2.8		0.0		6.3	0.0	0.0	0.0	26	23
R07	No of freight-tonne-km	2007																												0	0
		2008																												0	0
		2009																									2668		21168	23837	23837
		2010	22438		7	61	34024	107300	2667	13694	393		33091	32706		92	19564	13451	717	17179	6385	3894	48953	2842	11412	23464	3283	18	18532	416168	412274
R08	No of line-km (double track lines are to be counted ONCE)	2007																												0	0
		2008																												0	0
		2009																									1228		15975	17203	17203
		2010	5807	3540	3973	108	9628	33803	3613	900	2552	13853	5919	42039	8657	1683	16794	1768	275	1897	3016	4114	20045	2842	17263	11066	1228	3622	15777	235782	231668
RO3	№ of track-km (double track lines are to be counted TWICE)	2007	8154	6215	5119	159	11554	33897	3720	2200	3060	17885	8816	29973	10577	2110	18195	2181		4353	6700	4080	28499	3528	20385	15198	2192	4648	31515	284912	280832
		2008	8197	6282	5116	159	11554	51851	3800	2133	3062	17960	8848	45951	10577	2110	25720	2180		4731	6700	4080	28673	3528	20348	16075	2192	4638	31534	327997	323917
		2009	8154	6426	5154	159	11554	51780	3687	2166	3070	17972	8847	46007	10577	2141	26174	2182	422	3396	6868		28836	3528		15349	2187	4638	31571	302845	302845
		2010	8049	6344	5154	159	11554	63839		2167	3070	18967	8862	42039	10577	2165	24370	2148	614	3395	6830	4341	28743	3531	20171	15347	2187	4638	31631	330892	326551

Table 14 _ Reference data for economic indicators																															
ID	Reference data for economic indicators	Year	AT	BE	BG	CT	CZ	DE	DK	EE	EL	ES	FI	FR	HU	IE	IT	LT	LU	LV	NL	NO	PL	PT	R0	SE	SI	SK	UK	Total	Total EU
R09	\% of work passengers	2010						7		30	20	45					35		70	63				1		64	35				
R10	\% of non-work passengers	2010		100				93		70	80	55					65		30	37			100	99		36	65	100			
R11	National value of preventing a fatality (thousand $€$)	2010					1942					2130				2530	1430					598				2339	747		1893		
R12	National value of preventing a serious injury (thousand $€$)	2010					263					264				320	184					84				436	97				
R13	National value of time for a work passenger of a train (an hour) ($€$)	2010					56					42										6				7.35	18				
R14	National value of time for a non-work passenger of a train (an hour) ($€$)	2010					19					14										2				4.97	6				
R15	National value of time for a tonne freight (an hour) ($€$)	2010					3					2										0				0.12	1				
R16	Fall back value of preventing a fatality (thousand $€$)	2010	2202	2042	855	1815	857	1955	2705	667	1193	1445	2116	1920	616	2218	1613	531	3559	524	2203	4102	577	964	969	2308	1086	776	1714		
R17	Fall back value of preventing a serious injury (thousand $€$)	2010	301	310	116	244	116	270	335	88	156	179	281	268	83	281	207	73	555	70	292	576	79	129	131	337	142	106	222		
R18	Fall back value of time for a work passenger of a train (an hour) (ϵ)	2010	35.53	34.19	29.58	29.99	24.70	32.79	38.78	24.29	27.70	28.78	34.27	32.89	18.93	31.04	28.90	22.35	58.02	22.34	34.61	42.53	21.76	23.21	33.53	37.39	26.90	31.16	27.41		
R19	Fall back value of time for a non-work passenger of a train (an hour) (€)	2010	11.84	11.40	9.86	10.00	8.23	10.93	12.93	8.10	9.23	9.59	11.42	10.96	6.31	10.35	9.63	7.45	19.34	7.45	11.54	14.18	7.25	7.74	11.18	12.46	8.97	10.39	9.14		
R20	Fall back value of time for a tonne freight (an hour) ($€$)	2010	1.73	1.68	1.82	1.46	1.45	1.61	1.83	1.48	1.50	1.51	1.67	1.62	1.15	1.49	1.47	1.39	2.59	1.39	1.71	2.04	1.32	1.27	2.06	1.79	1.47	1.94	1.32		

ANNEX 2 _ LIST OF NATIONAL SAFETY AUTHORITIES
AND NATIONAL INVESTIGATION BODIES

National investigation body
Federale Overheidsdienst Mobiliteit en Vervoer Onderzoeksorgaanvoor Ongevallen en Incidenten op het Spoor
Service Public federal Mobilité et Transports
Organisme d'enquête sur les accidents et les
incidents ferroviaires
http://www.mobilit.fgov.be/
Ministry of Transport - Railway Accident Investigation Unit http://www.mtitc.government.bg
Drážní inspekce (DI) - Rail Safety Inspection Office http://www.dicr.cz/
Havarikommissonen for Civil Luftfart og Jernbane
http://www.havarikommissionen.dk
Bundesministerium für Verkehr, Bau und Stadtentwicklung
Eisenbahn-Unfalluntersuchungsstelle
http://www.bmvbs.de
Ohutusjuurdluse Keskus (OJK) - Safety Investigation Bureau http://www.ojk.ee
Railway Accident Investigation Unit
http://www.raiu.ie
Hellenic Ministry of Infrastructure, Transport and Networks Committee for Accident Investigation
Ministerio de Fomento
Comision de Investigación de Accidentes ferroviarios http://www.fomento.es
Bureau d'Enquêtes sur les Accidents de Transport Terrestre http://www.bea-tt.equipement.gouv.fr

Code	Country	National safety authority	National investigation body
IT	Italy	Agenzia Nazionale per la Sicurezza delle Ferrovie http://www.ansf.it	Railway Safety Commission http://www.mit.gov.it
LV	Latvia	Valsts dzelzcela tehniskā inspekcija - State Railway Technical Inspectorate http://www.vdzti.gov.Iv	Transporta nelaimes gadījumu un incidentu izmeklēšanas birojs Transport Accident and Incident Investigation Bureau (TAIIB) http://www.taiib.gov.Iv
LT	Lithuania	Valstybinė geležinkelio inspekcija State Railway Inspectorate http://www.vgi.lt	Katastrofu tyrimųvadovas National Investigation Body http://www.sumin.lt
LU	Luxembourg	Ministère du Développement durable et des Infrastructures Administration des Chemins de Fer (ACF) http://www.gouvernement./u	Administration des Enquêtes Techniques http://www.mt.public.lu/transports/AET/
HU	Hungary	Nemzeti Közlekedési Hatóság - National Transport Authority http://www.nkh.gov.hu	Közlekedésbiztonsági Szervezet - Transportation Safety Bureau http://www.kbsz.hu
NL	Netherlands	Inspectie Leefomgeving en Transport (ILT) http://www.ilent.nl	The Dutch Safety Board http://www.safetyboard.nl
AT	Austria	Bundesministerium für Verkehr, Innovation und Technologie Oberste Eisenbahnbehörde http://www.bmvit.gv.at	Bundesanstalt für Verkehr (VERSA) Unfalluntersuchungstelle des Bundes, Fachbereich Schiene http://versa.bmvit.gv.at
PL	Poland	Urząd Transportu Kolejowego http://www.utk.gov.pl	Państwowa Komisja Badania Wypadków Kolejowych (NIB) http://www.mi.gov.pl
PT	Portugal	Instituto da Mobilidade e dos Transportes Terrestres http://www.imtt.pt	Gabinete de Investigação de Segurança e de AcidentesFerroviários (GISAF) http://www.iot.gov.pt (site under construction)
RO	Romania	Autoritatea Feroviară Română (AFER) - Romanian Railway Safety Authority http://www.afer.ro	Organismul de Invesigare Feroviar Român (OIFR) - Romanian Railway Investigating Body http://www.afer.ro
SI	Slovenia	Javna agencija za železniški promet Republike Slovenije (AŽP) - Public Agency of the Republic of Slovenia for Railway Transport http://www.azp.si	Ministry of Transport Railway Accident and Incident Investigation Division http://www.mzp.gov.si
SK	Slovakia	Úrad pre reguláciu železničnej dopravy (URZD) - Railway Regulatory Authority http://www.urzd.sk	Ministry of Transport Posts and Telecommunication http://www.telecom.gov.sk
FI	Finland	Liikenteen turvallisuusvirasto - Finnish Transport Safety Agency (TraFi) http://www.trafi.fi	Onnettomuustutkintakeskus - Accident Investigation Board of Finland http://www.onnettomustutkinta.fi

 Statens haverikommission
http://www.havkom.se
Rail Accident Investigation Branch
http://www.raib.gov.uk/
Statens havarikommisjon for Transport - Accident Investigation Board
Norway (AIBN)
http://www.aibn.no
See the relevant authority or body in France or United Kingdom for the
respective part of the Channel Tunnel

Language EN

Catalogue number TR-AB-12-001-EN-C
ISBN 978-92-9205-017-7
ISSN 1831-1512
doi:10.2821/14

CONTACT

```
European Railway Agency
120 rue Marc Lefrancq
BP }2039
5 9 3 0 7 \text { Valenciennes Cedex}
FRANCE
and
European Railway Agency
Espace International
2 9 9 \text { boulevard de Leeds}
5900 Lille
FRANCE
Tel. +33327096500
Fax +33327334065
http://www.era.europa.eu
```


[^0]: $\left(^{7}\right)$ A. W. Evans (2011),'Fatal train accidents on Europe's railways: 1980-2009', Accident Analysis and Prevention 43(1), 391-401.
 ${ }^{(8)}$ Figure courtesy of Andrew W. Evans (Imperial College and University College London), based on own database of fatal train accidents and collisions and on the train-km data from the UIC, Eurostat and the ERA.

[^1]: ${ }^{(11)}$ The value of preventing a casualty (VPC) is composed of: 1. Value of safety per se: willingness to pay (WTP) values based on stated preference studies carried out in the Member State for which they are applied. 2. Direct and indirect economic costs: cost values appraised in the Member State, composed of: medical and rehabilitation cost; legal court cost, cost for police, private crash investigations, the emergency service and administrative costs of insurance; production losses: value to society of goods and services that could have been produced by the person if the accident had not occurred.
 $\left({ }^{12}\right)$ Implementation guidance for CSIs, Annex 1 of Directive 2004/49/EC as amended by Directive 149/2009/EC (ERA/GUI/12-2011) (http://www.era.europa.eu/).

[^2]: $\left({ }^{16}\right)$ Countries include the Channel Tunnel (CT) as a separate reporting entity, so the total number of reporting entities is 27.
 $\left({ }^{17}\right)$ Estimation for a set of 19 countries for which the data is available for all three years, excluding Italy and Romania.
 $\left({ }^{18}\right)$ Protection is typically provided by arm barriers.

[^3]: $\left({ }^{21}\right)$ Weighted fatalities and serious injuries are the normalised measure of railway safety outcome. One seriously injured person is considered as 0.1 fatalities and added to the number of fatalities in the given year.
 ${ }^{(22)}$ Commission Decision 2009/460/EC on a common safety method for assessment of achievement of safety targets.

[^4]: ${ }^{(23)}$ 'Within one week after the decision to open an investigation the investigation body shall inform the Agency thereof. The investigation body shall send the Agency a copy of the final investigation report.' (Art. 24(1,2) RSD (49/2004/EC).
 ${ }^{(24)}$ Figures have changed since the previous report due to the submissions of notifications for occurrences of 2008-10 during 2011.
 ${ }^{(25)}$ Figures concern only submitted reports and will change when all missing reports of occurrences for 2008-11 have been submitted to the Agency (see Figure 19 for open and completed investigations).

[^5]: $\left({ }^{26)}\right.$ 'active level crossing' means a level crossing where the crossing users are protected from or warned of the approaching train by the activation of devices when it is unsafe for the user to traverse the crossing (source: Commission Directive 2009/149/EC).
 $\left({ }^{27}\right)$ 'passive level crossing' means a level crossing without any form of warning system and/or protection activated when it is unsafe for the user to traverse the crossing (source: Commission Directive 2009/149/EC).

[^6]: $\left({ }^{29}\right)$ Regulation (EC) No 881/2004 of the European Parliament and of the Council of 29 April 2004 establishing a European railway agency (OJ L 220, 21.6.2004, p. 3).

