

HOF in Train Protection Systems: A Case Study from Irish Rail

Nora Balfe

Dr. Nora Balfe, Irish Rail

- Human Factors Specialist at Irish Rail .
- PhD in human factors aspects of automated signalling systems ٠
- 15 years experience in human factors across industry, regulation and academia ٠
- Visiting Research Fellow at Trinity College Dublin ٠

Case Study – Irish Rail Train Protection System

- Overview of case study ٠
- Examples of HOF automation issues in the project ٠
- Key approaches for integrating HOF •

Integration of Human and Organisational Factors in Railway Automation

2-3 December 2020 REMOTE CONFERENCE

- IÉ Hybrid System (IÉHS)
 - Class B system
 - Combines the functionality of existing ATP and driver warning systems with balise-based protection for movement authority and train speed
 - Initially started as an obsolescence project for existing systems
- It aims to protect against:
 - SPADs (through train stop and overspeed supervision)
 - Overspeeds through PSRs
 - Overspeeds through TSRs
 - Bufferstop collisions
- It <u>supervises</u> rather than replaces the driver
 - The driver is still primarily responsible for observing and responding to signals and for braking for stations, taking account of adhesion, the timetable, trackside hazards, etc.

- Project is led by the Infrastructure Manager
 - Main discipline is signalling
- Primary end users work for the Railway Undertaking
 - Drivers will have most of the interactions with the system
 - Largely invisible to signallers
 - Some interaction in maintenance and programming of balises for track/signalling engineers
- Result is that RU has been kept aware of project progress, but had relatively little input into shaping user requirements

How does IÉHS work

In non-CAWS/ATP areas, TPS onboard detects signal aspect from balise positioned at signal

Balises also give

Train is equipped with:

- Pick up coil to detect track code in ATP/CAWS areas
- Balise antenna to receive information from balises

Some 'classic' issues with automation

- Mode awareness
 - Automation which operates differently in different modes
 - Undermines user situation awareness
- Feedback and interaction
 - How to understand what the automation is doing
 - And how to make it do what needs to be done
- Screens where there were no screens before
- Business change
 - Although automation may be specified to fit into the existing system seamlessly, in practice this is rarely the case
- Reliability, de-skilling, monitoring role
 - Not expected to be issues due to the nature of the system

- Mode proliferation
 - The IEHS system includes 17 different operational modes, which were all individually described in the user manual
 - A review of these identified that, from the driver perspective, the train operated in the same way
 - Modes were reduced to 8, with 3 of these only applying during migration (i.e. as the network is fitted)
 - Five modes in the final system
- Mode transition
 - Acknowledgement only of less safe modes
 - Minimise transitions during migration
 - Current plan has maximum of 4 transitions in one passenger journey
 - For all current passengers routes, the average maximum during the migrations phases is 2.47

Feedback and interaction

ATP

Unfitted

Responsible

Staff

DTP

© iStock.com/Leyn

Shunt/ Reverse Stop Override **CAWS**

Running

Release

- Apart from Shunt/Reverse, the icons are not intuitive
- Creates a need for a reference tool in cab, particularly for rarely used icons

Other issues with interaction:

- No way to exit keyboard if it is mistakenly selected
- No feedback from buttons that are disabled in some modes
- System displays speeds in kmph, network operates in mph

Screens where there were no screens before

Business change

© iStock.com/Leyn

- First implementation was described as a like-for-like replacement of existing technology on two fleets
- Training needs analysis revealed that this was not the case
 - No aspect of using the system was unchanged
 - Some changes were minor (e.g. double confirmation of selecting a function instead of single)
 - Some were more major (e.g. entirely new brake test procedure, requirement to enter train formation and check brake isolations)
- Some procedures are not possible in the current system
 - E.g. temporary block working
 - Incomplete consideration of operational requirements
 - Lack of flexibility in automation programming

TPS Procedure	Same as existing ATP	Modified compared to existing ATP	Entirely new	Discrete task	Performed under time pressure	Safety critical
3.1 Power on		 ✓ 		 ✓ 		
3.2 Autotest		✓		✓		
3.3/4.1 Driver ATP test			~	~		
4.2 Data entry			√	✓		
4.3/4.4/5.3 Shunting mode			~		~	~
4.5/4.6/5.4 Reverse mode			~		~	✓
4.10 DRA (override)		~			~	✓
4.11 Running release		~			~	~
4.14 Change cab		~		~	~	
5.1 Cab selected		~		~		
5.2 Staff responsible			~		~	~
5.5 ATP mode		✓			✓	✓

How can HOF help?

- Applying HF methods as part of the project development
- Identify issues early, suggest suitable mitigations
- Main approaches:
 - Maintaining HF Issues Log
 - Facilitating User Group
 - Task/scenario analysis
 - Human error analysis
 - Training needs analysis

Integration of Human and Organisational Factors in Railway Automation

2-3 December 2020 REMOTE CONFERENCE

User group

- Composition
 - 1 driver and 1 driver assessor from each district
 - Chief driver
 - Rules manager
 - Trainer
- User group meetings 2-3 hours
- Every 4-6 weeks
- Currently running remotely
- Most drivers have seen the system on a test train
 - Arranging familiarisation for those who have not

- Future additions
 - Signaller
 - Permanent way staff
 - Signalling staff

- Issues on the user group agenda
 - Agree DMI icons, messages and sounds
 - User group requested reference book for icons
 - Highlighted that two different brake icons and sounds are not necessary
 - Agree acknowledgement of mode changes
 - Originally, driver had to acknowledge almost all mode changes
 - Proposed to acknowledge only changes to LESS safe modes; therefore, acknowledging a change means that the driver must increase their vigilance
 - Agree track signage designs
 - Retention of Driver Reminder Appliance
 - Position of transition balises
- User group runs in parallel with an Operations Stakeholder Group

- Currently tracking 86 HF related issues
 - From the minor, e.g. providing a sticker against the DMI to explain icon meanings
 - To the major, e.g. DMI reliability
- HF Issues log is shared with the technical development working group to explore and identify solutions to the issues
- Many of the issues are referred to the User Group for discussion
- The final issue log will provide assurance that HF issues have been considered and closed out through the project

- Swim-lane diagrams of current process developed
- Based on procedure documents and two DILO workshops
- Started by HF, completed by safety project team members
- Highlighted several areas for new system requirements (e.g. entering and exiting depots, temporary block working) and/or changes to operating procedures (e.g. new procedures to pass a signal at danger) 3. Exit depot – Current ATP
- Used as the basis for a human error analysis

2-3 December 2020 REMOTE CONFERENCE

- Although an IM project, much of the impact for end users is on the RU
- HF helps to bridge the gap between the system as imagined by the engineers and the system as experienced by the users
 - Many potential issues have been identified and mitigated early, e.g.
 - Identifying the actual level of training required
 - Distinguishing between technical modes and operational modes
 - Improving the DMI
 - Driving a migration plan that minimises mode transitions

Making the railway system work better for society.

Discover our job opportunities on era.europa.eu

