

# **Semantics for Beginners**

Rail Data Forum 2025 – Cluj-Napoca

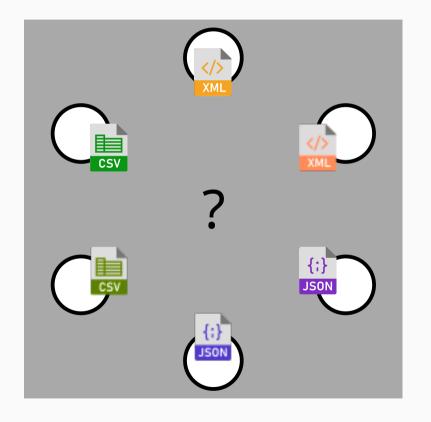
#### **Pierre-Antoine Champin**

https://champin.net/2025/rdf/

#### **About Pierre-Antoine**

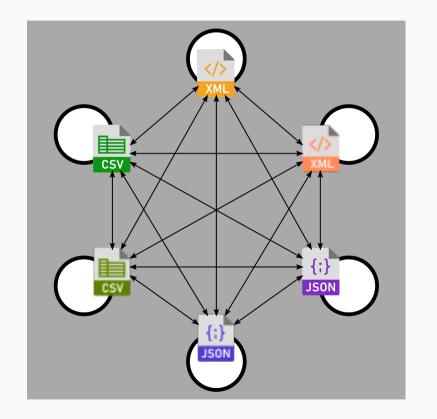


- Associate professor at <u>Université Lyon 1</u>, currently seconded to Inria
- Specialized in knowledge representation and exchange on the web
- Involved in several <u>standardization groups</u>
- Since 2021, W3C fellow




#### Structure of the talk

- 1. Semantics, what for?
- 2. RDF: a data model for interoperability
- 3. RDFS: a lightweight ontology language
- 4. OWL: expressive ontology language(s)

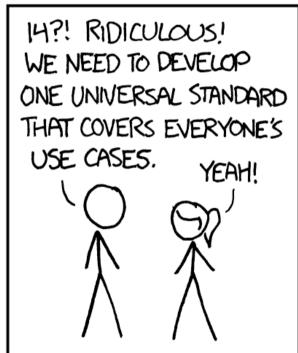



# Semantics for interoperability





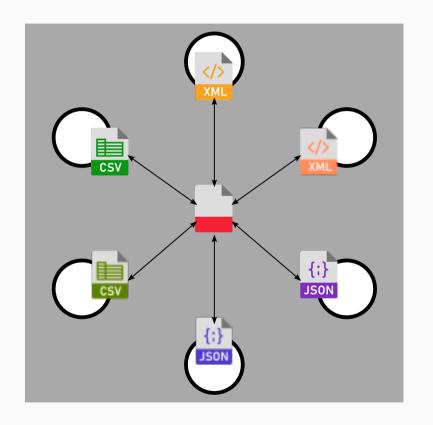
#### N<sup>2</sup> converters






#### One standard to rule them all

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)


SITUATION: THERE ARE 14 COMPETING STANDARDS.



500N: SITUATION: THERE ARE 15 COMPETING STANDARDS.

W3C\*

### **Pivot**





# Two aspects of interoperability

- Syntactic: using the same format
- Semantic: using the same conceptual model



#### Syntactic / not semantic

```
<person>
 <name>Alan</name>
 <surname>Turing</surname>
 <address>
   Bletchley Park, 1>
   Milton Keynes,
    UK
 </address>
</person>
```

```
<person>
 <name>Hedy Lamarr</name>
 <address>
   hedy@lamarr.name
 </address>
</person>
```

→ no real "interoperability"

#### Semantic / not syntactic

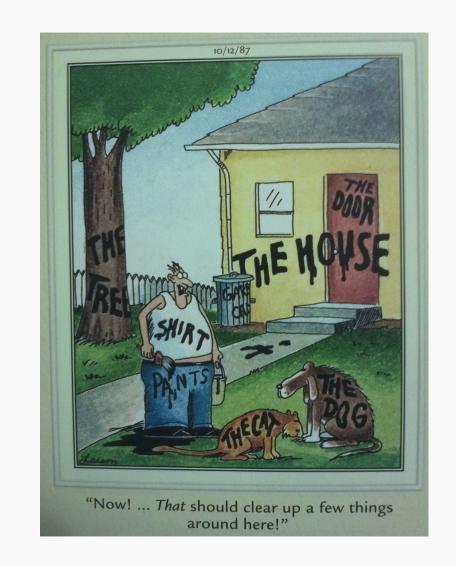
#### name

Name typically used to differentiate people from the same family, clan, or other social group who have a common last name.

Also known as: given name, first name

#### surname

Part of a person's name that is transmitted to a child by one of its parents.


Also known as: family name, last name

---



# **Knowledge Engineering**

- A subfield of AI
- (not that AI)
- Focuses on the design of ontologies, a.k.a.
  - Conceptual models
  - Conceptual schemas





### Ontology

"An ontology is an explicit specification of a conceptualization"

Gruber 1993

"An ontology is a description (like a formal specification of a program) of the concepts and relationships that can formally exist for an agent or a community of agents."

ibid.



#### Ontology vs. schema

- Schemas (XML, SQL, JSON...) primarily focus on syntax (the data)
- Ontologies primarily focus on semantics (the application domain)

```
<person>
  <name>Alan</name>
  <surname>Turing</surname>
  <address>
    Bletchley Park, 1>
    Milton Keynes,
    UK
  </address>
</person>
```



#### Structure of the talk

1. Semantics, what for?

#### 2. RDF: a data model for interoperability

- 3. RDFS: a lightweight ontology language
- 4. OWL: expressive ontology language(s)

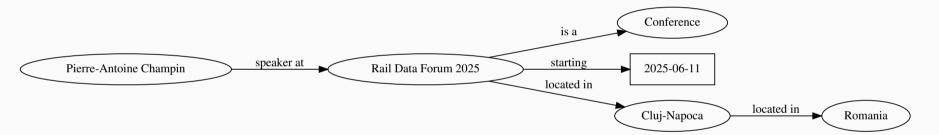


# RDF: Resource Description Frameworks

- A W3C Recommentation (1999, 2004, 2014, 202?)
- an abstract data model for achieving interoperability at Web scale
- Semantic Web, Linked Data



# RDF triples


Information is broken down into statements (also called triples) asserting that two things are in relationship with each other. Examples:

| Pierre-Antoine Champin | speaker at | Rail Data Forum 2025 |
|------------------------|------------|----------------------|
| Rail Data Forum 2025   | is a       | Conference           |
| Rail Data Forum 2025   | starting   | 2025-06-11           |
| Rail Data Forum 2025   | located in | Cluj-Napoca          |
| Cluj-Napoca            | located in | Romania              |



### RDF graph

A set of RDF triples can be represented as a graph (each edge representing one statement).





# **Globally Unambiguous Identifiers**

- Most identifiers are designed for a specific context;
- outside of this context, they becomome ambiguous
- and therefore fail to identify...

Examples contextual identifiers for a person

- full name
- social security number



#### Uniform Resource Locator/ Identifier

URL, URI, IRI

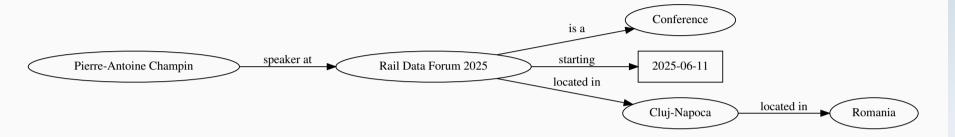
- https://champin.net/2025/rdf
- mailto:pierre-antoine@w3.org
- tel:+33-666-52-01-22
- doi:10.5594/SMPTE.ST2067-21.2020
- geo:43.615775,7.068552
- urn:isbn:978-951-0-18435-6



#### HTTP URLs for arbitrary things

- Is it acceptable to use <a href="https:">https:</a> (or <a href="https:">https:</a>) URLs to identify persons, places, concepts?...
- Long standing <u>controversy</u>, but the conclusion is "yes" (with some caveats).
- (Even considered good practice for Linked Data principles)
- E.g. https://champin.net/#pa




#### **Concrete syntaxes for RDF**

- RDF/XML (XML-based)
- JSON-LD (JSON-based)
- Turtle (text-based)
- N-Triples (line-based)

- interoperable (based on the abstract data model)
- domain-agnostic (only the URLs in the graph are domain-dependent)



# **Open World Assumption**



Romania located in Africa?

Romania located in Europe?

Anything that is not known to be true is considered unknown (maybe true, maybe false) —until more information becomes available.



#### Structure of the talk

- 1. Semantics, what for?
- 2. RDF: a data model for interoperability
- 3. RDFS: a lightweight ontology language

4. OWL: expressive ontology language(s)



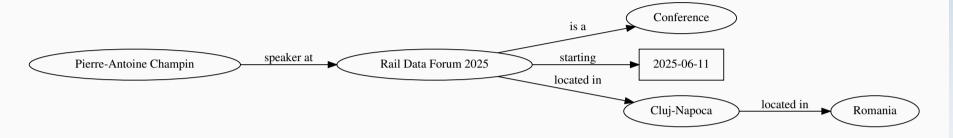
#### **RDFS: RDF Schema**

- A W3C Recommentation (2004, 2014, 202?)
- a lightweight ontology language for RDF
- in other words: an ontology for ontologies
- ontologies are themselves described in RDF



### RDFS ontology

Gruber's definition:


"An ontology is a description (like a formal specification of a program) of the **concepts and relationships** that can formally exist for an agent or a community of agents."

In RDFS, an ontology consists of

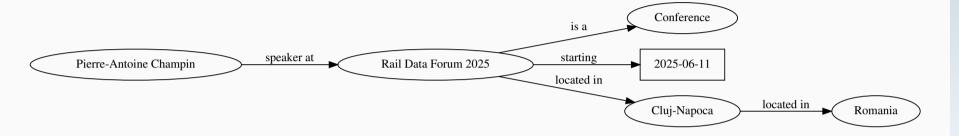
- classes (concepts)
- properties (relationships)
- special relationships between them



# Classes and properties



ex: speaker at rdf: is a rdf: Property


ex: Conference rdf: is a rdfs: Class

ex: starting rdf: is a rdf: **Property** 

ex: located in rdf: is a rdf: Property



#### **Label and comment**



ex: speaker at

rdfs: label

"speaker at" @ en

ex: speaker at

rdfs: label

"orateur à" @ fr

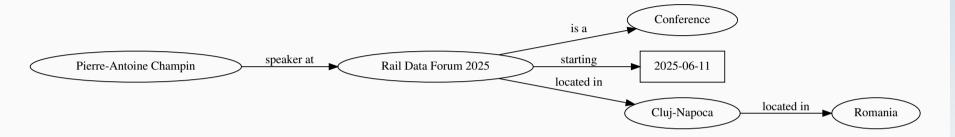
ex: speaker at

rdfs: comment

"(detailed description)"

ex: Conference

rdfs: label


"conference" @ en

• • •

...



# **Domain and range**



ex: speaker at

ex: speaker at

ex: starting

ex: Location

ex: located in

rdfs: range

rdfs: domain

rdfs: range

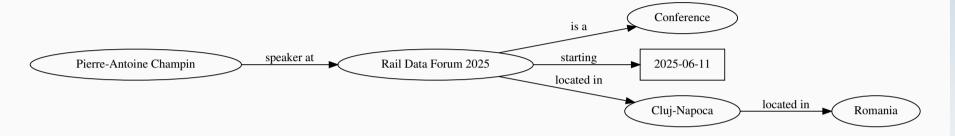
rdf: is a

rdfs: range

ex: Conference

schema: Person

xsd: date


rdfs: Class

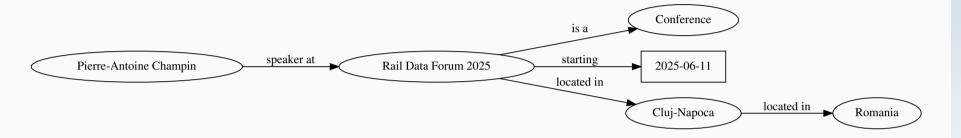
ex: Location





#### **Subclass**




ex: Event rdf: is a rdfs: Class

ex: Conference rdfs: **subclass of** ex: Event

ex: starting rdfs: domain ex: Event



# Subproperty



ex: participant in

rdf: is a

rdf: Property

ex: participant in

rdfs: range

ex: Event

ex: participant in

rdfs: domain

schema: Person

ex: speaker at

rdfs: subproperty of

ex: participant in



#### Structure of the talk

- 1. Semantics, what for?
- 2. RDF: a data model for interoperability
- 3. RDFS: a lightweight ontology language
- 4. OWL: expressive ontology language(s)



## **OWL Web Ontology Language**

- A W3C Recommentation (2004, 2012)
- a powerful (family of) language(s) for expressing ontologies





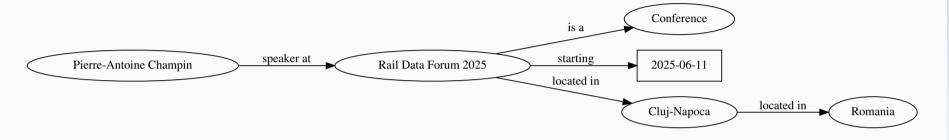


### **OWL Web Ontology Language**

- OWL ontologies are also defined in terms of classes and properties
- although OWL refines these notions compared to RDFS
- OWL reuses many terms from RDFS: label, comment, domain, range, subclass of, subproperty



# Forms of negation




ex: Event owl: disjointWith schema: Person

ex: located in owl: propertyDisjointWith ex: next to



# Specifying properties

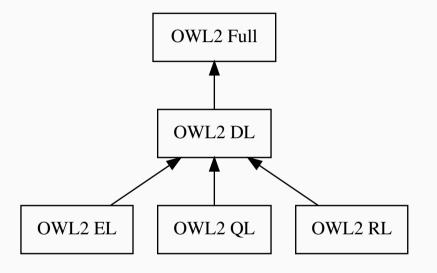


ex: located in rdfs: is a ex: TransitiveProperty

ex: next to rdf: is a owl: SymmetricProperty

ex: starting rdf: is a owl: FunctionalProperty

but also reflexive, irreflexive, asymmetric, inverse-functional, inverse, property path...




### **Specifying classes**

- OWL allows to define classes using classical set operations (union, intersection, complement)
- e.g. the class of all Events that are not Conferences (E∩C<sup>c</sup>)
- e.g. the class of all Men and Women (M∪W)
- OWL allows to define classes based on the properties of their instances
- e.g. the class of all persons who participate in at least 2 conferences
- e.g. the class of all events that are located in Romania



#### **OWL Profiles**



See https://www.w3.org/TR/owl2-profiles/



# Any question?

https://champin.net/2025/rdf/



