Risk assessment and Safe integration of railway sub-systems – Process and formalism

TSI and Data Digitalisation Workshop

Dragan JOVICIC | 27 March 2025 | Hybrid - Portugal

Overall architecture of the railway system

Figure 2 built based on:

- definitions (1), (3), (4) and (5) in Article 2 and Annexes I and II of Interoperability Directive (EU) 2016/797, and
- 2) Article 4 of Safety Directive (EU) 2016/798

Railway undertakings (RUs) and infrastructure managers (IMs) main actors **responsible for**:

- 1) safety of railway system, and
- 2) safety of railway traffic management, operations

Example of legal and process requirements a Proposer (or an Applicant) must comply with for the placing of a vehicle on the market or a line into service

* DB Systemtechnik GmbH | Niko HOLST | TT.TVP32 | AsBo Coop. 31.03.2022

Usual railway sector perceptions regarding railway market opening legislation

- 1) Introduction of new concepts and terminology
- 2) New sharing of roles and responsibilities between existing but also new railway stakeholders/actors
- 3) Need for certification by an Authorising Entity of the capability of railway undertakings, infrastructure managers and ECMs to manage safely their railway activities + regular supervision by NSA
- A) Need for verification by independent conformity assessment bodies (CABs) (NoBos, DeBos, ECM CBs, AsBos) of the compliance with applicable legislation
- 5) Authorisation of <u>placing on the market</u> mobile subsystems *based on CABs' independent assessments*
- 6) Authorisation of <u>placing into service</u> of fixed installations *based on CABs' independent assessments*

Main changes:

- 1) organisational changes separating operations and infrastructure
- 2) new actors, roles and responsibilities (ERA, NSA, ECMs, RUs, IMs, NoBos, DeBos, AsBos, etc.)
- 3) harmonisation of technical specifications for interoperability
- 4) harmonisation of safety regulatory framework

Examples of other novelties:

- 1) Moving from "blind" compliance to predefined Rules/Standards to a risk-based approach with Proactive Risk Identification, Risk Management and Risk Monitoring
- 2) Obligation to cooperation for identifying and managing jointly risks shared at interfaces between several sub-systems/actors
- 3) Necessity for a systematic top-down approach for identifying, allocating and managing implementation and validation of intended functions and requirements
- 4) Safe integration of changes into railway system and demonstration of absence of unsafe impacts of those changes (non-regression) on non-modified parts of railway system

Perception of the concepts

I WAYS

- In general lack of understanding and many fears arising from new concepts and new terminology (in English)
- Most people perceive Risk Identification and Risk
 Management as a **boring task** that almost nobody likes and **nobody is happy to deal with it**
- Wrongly understood as replacing rules historically used to control risks experienced in past
- No matter we like or dislike it, all risks a company is exposed to must be:
 - ✤ identified/known and understood
 - controlled to an acceptable level by appropriate (risk control) measures
 - **b** monitored to verify effectiveness of those measures
 - ✤ If necessary, other measures identified & implemented

Solution to overcome perceived complexity

Nothing really new, as for a **complex and safety related system**, to fulfil all applicable requirements **(Outputs)**, applicant must have:

- 1) an organisation/**Structure** with competent **staff** (personnel)
- 2) supporting safety and quality **Processes** for:
 - a) correct capture (identification) of all requirements to be fulfilled
 - b) allocation of requirements to functions or sub-systems
 - c) management of implementation of all requirements
 - d) tests, verification and validation to demonstrate correct implementation of all requirements (**Outputs**) throughout development process

Known in existing standards as "system engineering and functional safety engineering", i.e. a structured and systematic top-down approach for identification and management of requirements to be fulfilled by complex and safety related systems

Tools in EU railway legislation

1 Reg. 402/2013 on CSM for risk assessment

Further developed in:

"ERA1209-063 Clarification note on safe integration"

- 2 Requirement capture process in Article 13 of Reg. 2018/545 on PA VA
- Concepts in these two tools
 [1 & 2] also apply to
 infrastructure projects

8

What to remember regarding independent safety assessments by an AsBo?

Proposer's/Applicant's organisation and processes for change and risk management activities

Application of EU new approach to free circulation of products across the EU to specific case of railway market opening

10

standards

with

compliance

Check of

AB)

gnised

ccredited/reco

σ

2

Not specific to railways

Harmonised EN standards (CEN, CENELEC, ETSI)

National standards Company standards

Supporting Guidelines (e.g. ERA application guidelines)

General principles within EU New Approach/Global Approach that products must meet to benefit from free movement across EU

Political decisions – Primary legislation that **needs to be transposed in national laws**

Harmonisation requirements (usually in Directives) define mandatory **essential requirements that products must meet**

EN Standardisation: technical specification for products - Application voluntary unless made mandatory in EU legislation

Other standards or technical specifications permitted (unless mandatory through Notified National Rules)

Voluntary supporting documents

F

Products manufactured in compliance with harmonised standards & assessed by accredited/recognised CABs benefit from presumption of conformity with essential requirements without further checks

2	EUROPEAN UNION	Principles of EU New Approach and Global Approach applied to railways Essential requirements specified not only in directives		
2 B)	FOR RAILWA	AYS Directive	es IOD 2016/797 SD 2016/798 ERA Reg. 2016/796	Political decisions – Primary legislation that needs to be transposed in national laws
by accredited/recognised (CA	Compulsory use of CABs with defined R&R	Safety Regulatory T framework	Sis Specific to railway needs	Commission Regulations and Decisions (TSIs) which application is mandatory (without any transposition)
		Harmonised EN standards (CEN, CENELEC, ETSI)		Standardisation: application is voluntary unless made mandatory in EU legislation (e.g. ISO 17020 in CSM for risk assessment)
		National standards Company standards		Standardisation: voluntary unless made mandatory through Notified National Rules
	Supporting Guidelines (e.g. ERA application guidelines)		idelines n guidelines)	Voluntary supporting documents
	Authorisatio	Authorisation for placing on market of Mobile sub-systems [by FRA or NSA]		

Authorisation for placing into service of Fixed installations [NSA]

12

Check of compliance with standards

EU safety regulatory framework for railways

Main novelty in EU railway market opening legislation Introduction of a harmonised way of thinking in terms of risks

For many railway stakeholders, major shift in manner to manage safety of railway operation, traffic management and maintenance activities

- 1) **PAST:**
 - a) sufficient to comply with well-established national rules, standards and legislation
 → technical differences, and approach to safety, among countries
 - b) International traffic made possible only thanks to (voluntary) <u>international or multilateral</u> <u>agreements</u> (COTIF, RIV, bilateral agreements,...)
- 2) NOVELTY: EU railway market opening legislation requires stakeholders to fully take themselves the responsibility for the safe management of their activities through a **risk based approach**

→ New concepts and new obligations/responsibilities that generate many fears

16

Main novelty in EU railway market opening legislation Proactive and continual risk identification, management <u>and monitoring</u>

- □ Instead of **«reacting and fixing»** only the events that occurred in past, the Safety Directive requires RUs, IMs & ECMs to put in place:
 - ♦ (Safety) Management System (SMS/MS), and;
 - proactive way of thinking in «predicting and preventing» possible unwanted events (risks) that may happen;

- To ensure safe Operation & Maintenance of railway system, Safety Management System [System of Maintenance] [SMS/MS] shall look both FORWARD and RETROSPECTIVE in order to IDENTIFY and CONTROL (all) risks associated with RU, IM & ECM activities. This implies to:
 - ♥ **«predict»** unwanted events that can happen during operation & maintenance;
 - **«identify and implement»** risk control measures [i.e. SMS processes, procedures, & rules] in order to **«prevent»** them to happen or, if the risk cannot be eliminated, to **«protect»** against the consequences of those unwanted events;
 - **«monitor»** continually the effectiveness of predictive and preventive measures

Cornerstones/Pillars <u>processes</u> of an effective Safety Management System [System of Maintenance]

cannot be separated from each other

Implementation of "Technical, Operational & Organisational" changes can be <u>safe & effective</u> only if **Change Control Management** process of RU/IM SMS is based on a <u>continual and combined use of</u> these two other key processes

CSM for risk assessment (Reg. 402/2013 and 2015/1136), and

CSM for monitoring (Reg. 1078/2012)

18

Relation of CSM RA and CSM for monitoring with other processes of the Safety Management System [System of Maintenance]

Legal texts in European Railway Safety Regulatory Framework

Safe Operation & Maintenance

Overall picture of main railway actors and control mechanisms foreseen in EU railway legislation

SMS/MS Certification and Authorisation Mutual recognition across the EU

- RU SMS must be certified by ERA, or where relevant by NSA, and supervised by NSA
- IM SMS must be certified& supervised by NSA
- ECM system of maintenance must be certified & supervised by ECM certification body

Independent conformity assessment bodies (CABs) responsible for verification of conformity:

- by NoBos of ICs and structural sub-systems with Interoperability Directive 2016/797 and TSIs
- 2) by DeBo with National Rules
- 3) by AsBo with CSM for risk assessment

Overview of the CSM for risk assessment

(Regulation 402/2013 & Regulation 2015/1136)

Overview of CSM RA - Flowchart in Annex I

1) Common PROCESS for <u>risk assessment</u> of changes of Technical, Operational & Organisational nature (TOO), including:

- (a) System definition
- (b) Identification of hazards/risks & associated safety measures
- (c) Risk analysis based on exiting risk acceptance principles
 (CoP, Ref. Syst, Explicit Risk Estimation <u>no priority</u>)
- (d) Risk evaluation for checking acceptance of risk(s)
- (e) Definition of safety requirements from identified safety measures
- 2) Demonstration of system compliance with identified safety requirements

3) Requirements for <u>mutual recognition</u>:

- (a) Hazard Management via a Hazard Log
- (b) Independent Assessment (AsBo) of correct application of general requirements of a PROCESS + of suitability of results

- □ Proposer responsible for applying CSM RA:
 - carry out risk assessment of all safety related changes
 - document/justify all decisions and results

□ When change significant, Proposer must appoint an AsBo for:

- independent assessment of both correct application of risk management process and suitability of results from that process
- deliver an Independent Safety Assessment Report to Proposer
- Proposer responsible for determining <u>if and how</u> to take into account conclusions of AsBo Report for accepting change

If it disagrees with any part of AsBo report, justify and document

□ Article 16: Proposer's Declaration

Based on results of its own risk assessment and on AsBo Report, Proposer must produce a <u>written Declaration</u> stating that all identified hazards and associated risks are controlled to an acceptable level

- □ Risk Assessment is not always a ton of paper It could be short
- The most important step in any risk assessment is that hazards can only be controlled if they are <u>IDENTIFIED</u>
- Risk assessment is a means to an end, not an end in itself.
 The aim is to keep people safe, not only to have good paperwork
- □ The risk analysis process depends on:
 - \mathbf{b} the experience,
 - \Leftrightarrow the knowledge,
 - ✤ the imagination,
 - ✤ the creativity, and,
 - \mathbf{b} the integrity

of the individuals doing the analysis

Successive versions of CSM for risk assessment Dates of application of the methodology

28

Associated guides for application of CSM for risk assessment Complementarities between Guides and Standards

Where is risk assessment necessary/required? Summary of the legal requirements

Where is risk assessment necessary/required?

Changes of technical nature

Changes to SMS of Operational and Organisational nature

Compliance with TSIs

Authorisation for placing vehicles on the market

ERTMS - CCS TSI

Examples of "processes for risk assessment" and control of risks arising from safety-related non-significant changes

risk acceptable/tolerable

compliance part of Figure 6 of 50126-1:2017

32

Return of Experience [REX] with the CSMs

33

Return of Experience with CSM RA: underestimation of importance of independent assessment of safe management of safety-related changes

PRACTICE: many railway actors misuse concept of "Significant Change" in CSM RA

Return of experience (REX) done in 2018 shows that:

- □ most of railway stakeholders underestimates **importance of**:
 - carrying out a formal <u>risk assessment</u>, when implementing changes in railway system, and
 - ✤ independent assessment by an AsBo of risk assessment and its results
- □ less than 5% of changes considered as significant, and lead to:
 - ✤ a formal application of risk management process in Annex I of CSM RA
 - an independent assessment by an AsBo of <u>correct application</u> of risk management process and of <u>suitability of results</u> from risk assessment
- In practice, no matter we like or dislike it, proper Risk Identification, Risk Control and Risk Management must be done for both Significant and Non-Significant changes

Rather than focussing on demonstration that a "safety-related change" is not significant, and thus wasting crucial time, Proposer shall always:

- **c**arry out a formal & systematic identification of all reasonably foreseeable risks arising from change
- □ reflect on added the value of independent safety assessment by an AsBo (e.g. need of mutual recognition for an authorisation or customer) → then do not hesitate to:
 - categorise change as significant
 - ✤ appoint an AsBo from beginning of project Contracting an AsBo at end of project is useless
- □ no matter whether safety-related change is significant, or not, ensure risks are acceptable, by either:
 - eliminating risk (preventive risk control measures), or
 - ✤ reducing either frequency or severity of consequence (*risk mitigation measures*), or
 - ✤ accepting risk, if risk is reduced to a sufficiently low level, or
 - transferring to another actor, if the risk is related to an interface shared with another actor

□ document formally all results from risk assessment → evidence of proper risk management

When making a change, when shall start:

- 1) Risk assessment and risk management process?
- 2) Independent safety assessment by an AsBo?

From the VERY BEGINNING of management of a change! – Why?

- 1) to permit an early identification <u>by applicant's risk management activities and independent safety</u> <u>assessment by an AsBo</u> of potential problems with:
 - a) project organisation and use of adequate competences for project staff
 - b) appropriateness and correct application of **supporting safety and quality processes** for:
 - c) correct implementation of outcomes of
- 2) to take timely preventive corrective measures
- 3) to avoid placing products on market or in service with heavy operational and maintenance constraints

Development process or V-Cycle in CENELEC 50126 standard

Traceability between CSM and CENELEC

EXAMPLE 1 of risk assessment of an ORGANISATIONAL change

(not exhaustive)

System definition of the change

1) A railway company decides to **sub-contract** an activity.

The organisational change consists in a redesign of the management system where some of the activities previously carried out internally in the company are going to be out sourced. A new interface is going to be created.

- 2) Remarks
 - a) This choice represents an Organisational change that is to be managed according to the procedures of the management system of the company.
 - b) This example focuses only on the organisational aspects of the change. Although the technical or operational aspects of the change are also to be covered for a complete management of safety, for the purpose of this example the analysis is not included below.

Risk Assessment using human language and sequential writing of outcomes of reflexions

Hazard identification (not exhaustive)

The contractor is not competent to deliver what the railway company requests;

Consequence

Service delivered by the contractor is not compliant with the contractual technical and safety requirements

Risk depends on which activity is sub-contracted

E.g. if sub-contractor fails to report presence of vegetation along the track, could lead to a SPAD

Measures (safety requirement)

Define a company "procedure for selecting qualified contractors according to an internal qualification scheme" including:

- (a) assessment of competence;
- (b) certifications (e.g. ISO 9001 or ECM certificate);
- (c) proven experience in the same type of services or activities for another customer.

Same Risk Assessment presented in form of a table Known in risk management terminology as FMEA (see ISO 31010)

Ref.	Hazard	Consequences	Risk	Safety requirement	Responsible	Exported to	Demonstration of compliance	Status	Monitoring activity
1.	The contractor is not competent to deliver what the railway company requests	 Service delivered by the contractor is not compliant with the contractual technical and safety requirements 	Depends on sub- contracted activity	 Define a company "procedure for selecting qualified contractors according to an internal qualification scheme" including:	Safety Manager	Νο	 A procedure is defined according to both the company document management system and the organisation of the company. Selection of qualified contractors compliant with the defined company procedure 	Closed	 Internal audit for checking the correct application of the selection procedure of qualified contractors and for assessing the contractor competence against the relevant qualification scheme. Check continuous contractor's compliance with the required qualification scheme trough inspections, Request the contractor through contractual arrangements to report the results of any internal or third party audit results and any other issue affecting the validity of the relevant certificate.
				 Mandatory training for workers employed by the contractor. 	Safety Manager		 3. The competence management system of the company is updated with a procedure to ensure that: (a) the company training program includes also training of the external staff which is performing safety tasks; (b) a final evaluation of that external staff knowledge is performed. 		 Monitoring of knowledge of contractor's workers is done through the final evaluation exam. Audit the correct application of the process. Use specific indicators to measure the efficiency of the training for the external workers. Direct supervision of the external workers by the railway company is foreseen in contractual arrangements.

Same Risk Assessment presented in form of a table Known in risk management terminology as FMEA (see ISO 31010)

Ref.	Hazard	Consequences	Risk	Safety requirement	Responsible	Exported to	Demonstration of compliance Status	Monitoring activity
2.	The contractor is not conscious of the impact of its work on the safety level of the railway system	 Service delivered by the contractor is not compliant with the technical and safety requirements Fatalities or (severe) injures of external workers 	Depends on sub- contracte d activity	 Inform the contractor in a documented way, supported by bilateral meetings, on possible consequences of contractor workers' mistakes and on the overall impact of its activities on the railway system 	Safety Manager	No	 Contractor warned about impacts of its work on the safety of the railway system Communication on risks through bilateral meetings with contractor's workers 	 Check during internal audits that the contractor's workers were informed about the impacts of their work on the safety of the railway system Check also that bilateral meetings were done
				 Mandatory training for workers employed by the contractor. 	Safety Manager	No	 3. The competence management system of the company is updated with a procedure to ensure that: (a) the company training program includes also training of the external staff which is performing safety tasks; (b) a final evaluation of that external staff knowledge is performed 	 Monitoring of knowledge of contractor's workers is done through the final evaluation exam. Audit the correct application of the process. Use specific indicators to measure the efficiency of the training for the external workers. Direct supervision of the external workers by the railway company is foreseen in contractual arrangements.

Same Risk Assessment presented in form of a table Known in risk management terminology as FMEA (see ISO 31010)

Ref.	Hazard	Consequences	Risk	Safety requirement	Responsible	Exported to	Demonstration of compliance	Status	Monitoring activity
3.	The workers of the contractor are not aware of the hazards coming from the new working environment	 Exposed to accidents 	Fatalities or (severe) injuries of external workers	 Mandatory training for workers employed by the contractor. 	Safety Manager	No	 3. The competence management system of the company is updated with a procedure to ensure that: (a) the company training program includes also training of the external staff which is performing safety tasks; (b) a final evaluation of that external staff knowledge is performed 		 Monitoring of knowledge of contractor's workers is done through the final evaluation exam. Audit the correct application of the process. Use specific indicators to measure the efficiency of the training for the external workers. Direct supervision of the external workers by the railway company is foreseen in contractual arrangements.
4.	The railway company produces instructions or contractual arrangements	 Contractor not aware of the contractual safety requirements. 	Depends on sub- contracted activity	 Consultancy for contract definition 	Safety Manager	Yes	 Consultancy contract established 		 No direct monitoring is foreseen for this action
	where there is room for interpretation	 Contractor is not aware of its responsibilities. 		2. Contract management procedure foresees a continuous improvement of the contract	Safety Manager	No	2. Procedure		2. Collection of feedback related to the issues arising from contract interpretation
5.	•••	•••	•••	•••	•••	•••	•••	•••	•••

EXAMPLE 2 of risk assessment of a <u>technico-organisational</u> change

(not exhaustive)

Scope of CSM-DT – Related to Regulation 402/2013 on CSM RA Needed in 3rd risk acceptance principle "explicit risk estimation"

What is Regulation 2015/1136 about:

A set of new definitions
 An amendment of point 2.5 in Annex I of Regulation 402/2013

Non legally binding example of risk assessment from

"Guide for the application of the CSM design targets (CSM-DT) [Regulation 2015/1136]"

Annex 5 – Fitting existing passenger trains with an onboard Hot Box Detection system

<u>http://www.era.europa.eu/Document-Register/Pages/Workshop-of-</u> 29-30-November-2016-on-the-application-guide-on-CSM-DT.aspx

- 1. System Definition
- 2. List of functions (also part of System Definition)
- 3. Scope, assumptions and limits of the risk assessment
- 4. Hazard Identification and Hazard Classification
- 5. Applicability of CSM-DT: direct consequence, or presence of external barriers preventing the accident
- 6. Setting up of applicable category of CSM-DT
- 7. Allocation of quantitative requirements Alternative solutions or cases
- 8. Conclusions from the risk assessment and the allocation of CSM-DT category

TS under assessment: <u>onboard</u> Hot Box Detection system 1. System definition

TS under assessment: onboard Hot Box Detection system 2. System definition – List of functions

Detection of emerging failures of wheelsets and axleboxes (e.g. wheel bearing fatigue, loss of bearing lubrication in axleboxes, defective brakes, etc.)

Existing System

- Rolling Stock: maintenance and operational procedures [predeparture checks, periodic planned maintenance inspections and preventive maintenance operations]
- Trackside "hot box detectors" at regular distances to alarm traffic control center to:
 - inform train driver for stopping train at an appropriate and agreed location
 - reduce speed of trains arriving in opposite direction on adjacent tracks (lateral shock risks caused by blast)

Change under assessment

- Install on existing trains "hot box detectors" which will (<u>functions</u>):
 - monitor overheating of wheelsets and axleboxes
 - in case of overheating, lit a lamp in driver's cabin
- Train driver can stop safely and verify whether additional operational actions might be necessary (e.g. proceed with a speed restriction)

TS under assessment: onboard Hot Box Detection system 2. Differences between existing system and change under assessment

- Instead of using a radio communication from Traffic Control Center, "hot box information to driver" is replaced by a "visual and/or audible indication", using for example a wired connection or a train communication bus.
- □ Existing infrastructure HB detection system: trackside detectors laid down at regular distances along railway line → in case of failure, "hot box event" detected at next location (e.g. every 25 km, if speed 250 km/h, next HB in 6 minutes)

Infrastructure detection is fault tolerant – HB event remains undetected only during time needed to reach next trackside HB detector.

- □ <u>New trainborne HB detection system:</u>
 - ✤ HB detection continuous instead of being punctual e.g. every 25 km
 - if HB detector fails, HB event remains undetected until detector is repaired (*info for risk assessment need for redundancy?*)
 - ♥ HB information not automatically available to IM → Traffic Controller cannot thus enforce necessary speed reduction on adjacent tracks to mitigate lateral shock risks caused by blast at crossing of two trains

TS under assessment: onboard Hot Box Detection system 3. Scope, assumptions and limits of the risk assessment

- □ <u>Functions not studied</u>: some HB detection systems might also:
 - indicate increase of temperature gradient which influences operational procedures and emergency of driver's reaction for stopping train safely
 - Iocate accurately coach number, axle number and side of train where wheelset or axle box is overheating

□ Limitations for the risk assessment:

- statistics of hot box occurrences used in the example are dependent on effectiveness of maintenance and operational procedures of RU SMS
- risk assessment is done by an RU which decides to fit some of its existing trains with a new trainborne hot box detection system
- the existing infrastructure hot box detection system is not removed and continues to be used
- the manner those two systems are used, with any necessary operational procedures, is not covered by risk assessment below. It needs to be analysed and evaluated in a separate risk assessment

□ Limitations for the risk assessment:

- Sealures of train driver are neither considered nor associated risk control measures proposed
- ✤ Risk assessment only focusses on technical aspects of the change
- It is assumed that associated human factor aspects are properly analysed and controlled through RU SMS
- Since with a trainborne HB detection system, HB detections can occur at any moment of time and at any location of track, operational procedures need to be defined with IM to manage a safe stopping of train at an appropriate and agreed location

Although these considerations impact safe operation of railways, they do not condition setting up quantitative safety requirements for design of trainborne HB detection system \rightarrow they must be addressed by a separate risk assessment

TS under assessment: onboard Hot Box Detection system 4(a) Hazard Identification– Use of an FMEA

N°	Function	Functional failure modes	Cause	HAZARD - Consequence at level of technical system	Consequences at train level
1.	Trainborne Hot Box Detection	Detection does not start	 Hot Box Detector failed Failure of indication system 	Hot Box Event not detected by technical system when required	In case of a Hot Box Event, the driver is not informed and cannot stop the train safely.
2.		Detection starts when not required	 Hot Box Detector failed Failure of indication system 	Spurious detection of a Hot Box Event	 Driver required to stop the train whereas not necessary Traffic operation disturbed
3.		Detection does not stop when required	 Hot Box Detector failed Failure of indication system 	Spurious detection of a Hot Box Event	 Driver required to stop the train whereas not necessary Traffic operation disturbed
4.		Detection stops when not required	 Hot Box Detector failed Failure of indication system 	Hot Box Event not detected any more by technical system whereas still required	In case of a Hot Box Event, the driver can be misled (e.g. believes it is a false alarm) and could ignore the alarm whereas he shall stop the train safely.
5.		Detection is delayed in response	 Hot Box Detector failed Failure of indication system 	Hot Box Event may not be detected on time to permit actions to be put in place to ensure the safety	In case of a Hot Box Event, the driver is informed too late and might not stop the train safely.
6.		Detection degra- ded (e.g. wrong output level)		Not applicable. The hot box detection is a binary output	Not applicable. The hot box detection is a binary output

TS under assessment: onboard Hot Box Detection system 4(b) Hazard Classification – Use of an FMEA

N°		HAZARD - Consequence at level of technical system	Consequences at train level	Potential accident	Potential for at least 1 fatality
1.		Hot Box Event not detected by technical system when required	In case of a Hot Box Event, the driver is not informed and cannot stop the train safely.	FireDerailment	YES (i.e. risk not broadly acceptable)
2.		Spurious detection of a Hot Box Event	 Driver required to stop the train whereas not necessary Traffic operation disturbed 	No – Specific operational procedures must be defined to prescribe the actions of the driver when a Hot Box Detector reports a false alarm	NO Frequency to be estimated (i.e. risk is broadly acceptable?)
3.					
4.					
5.		Hot Box Event may not be detected on time to permit actions to be put in place to ensure the safety	In case of a Hot Box Event, the driver is informed too late and might not stop the train safely.	FireDerailment	YES (i.e. risk not broadly acceptable)
6.		Not applicable. The hot box detection is a binary output	Not applicable. The hot box detection is a binary output	Not applicable	Not applicable

In this example, it is considered that the estimated frequency of event n°2 ensures that the associated hazards are broadly acceptable

6 identified functional failure modes can be classified in 4 categories:

- (a) **failure modes 1 and 4** resulting in "non-detection" of a HB Event and therefore to lack of information to the driver for stopping the train safely;
- (b) **failure modes 2 and 3** resulting in a spurious detection of a HB Event and thus disturbing the traffic operation;
- (c) **failure mode 5** resulting in a too late "detection" of a HB Event and therefore a late information to the driver for stopping the train safely;
- (d) failure mode 6 which is physically not possible for the system under assessment.

In addition to that, the risks associated to failure modes 2, 3 and 6 do not result in an unsafe situation \rightarrow out of scope of safety assessment

Failure modes 1, 4 and 5 are not broadly acceptable

Hot Box Detection function at the trackside level

- Distance between on-track Hot Box Detectors:
 - ✤ 30 to 45 km for High Speed Lines
 - ♦ 60 to 150 km for Classic Lines
- Functions, involving either a "Monitoring Operator" or "Automated System":
 - detect side of train with Hot Axle/Wheel
 - ✤ axle number from head of train
 - inform Traffic Manager on HB event (track, train, direction)

□ When alarm of overheating received, Traffic Manager:

- manages stopping of train putting signals to RED + informing
 Train Driver by Track-Train Radio, if possible
- Train Driver stops train normally, without emergency brakes in a safe place (not in a tunnel or a bridge/viaduct)
- secures operation on adjacent tracks (e.g. reducing their speed)

Hot Box Detection function at the trackside level

- Train Driver actions, once train stopped:
 - ✤ after securing himself, inspect train according to procedure of RU SMS
 - ✤ if available [side + axle number from train head], inspect it, or entire train
 - ✤ after checks, inform Traffic Manager of train status:
 - continue service under conditions, or
 - remove from service to closest parking track or workshop
 - ✤ Traffic Manager decides on conditions to release operation of trains on adjacent tracks
- Questions for brainstorming in case of failures of a trackside Hot Box Detector
 - ✤ Removal of HBD from service for a SHORT or LONG period of time
 - ♥ IM informing RUs operating on the line (track number, km, direction)
 - Acknowledgement by RUs of message received
 - ✤ IM measures during HBD unavailability (operational speed limited by signalling or by procedures)
 - ✤ Differences between High Speed and Conventional Speed lines
 - ✤ Informing RUs once HBD functionality restored

TS under assessment: onboard Hot Box Detection system 5. Applicability of CSM-DT, based on point 2.5.5

Analysis approached through point 2.5.5. of Reg. 2015/1136

CSM-DT can be used if failure has "... a credible potential to lead directly to ... a catastrophic ... or a critical accident"

Schematic representation of the events and contributors to the trainborne hot box detection function.

TS under assessment: onboard Hot Box Detection system 5. Applicability of CSM-DT, based on point 2.5.5.

What conditions have a credible potential to LEAD DIRECTLY to an accident in case of failure of trainborne Hot Box Detection function?

IF the following two conditions are met during the same period of time :

(a) the "trainborne hot box detection function" is failed, i.e.:

- (1) either trainborne "HB Detector" is failed, or;
- (2) indication of HB Event is not transmitted to driver through communication means (e.g. wired connection or train bus), or;
- (3) both do not work any more;

<u>AND</u>

(b) wheelset under supervision of that TS is overheating;

<u>THEN</u>

(c) there is "a <u>credible potential</u> to lead <u>directly</u> to a catastrophic or a critical accident" \rightarrow as driver is not informed about HB Event, he cannot enforce a progressive train deceleration for stopping the train safely

Analysis approached through point 2.5.9. of Reg. 2015/1136

"Where the failure of a function of the TS under assessment does not lead directly to the risk under consideration, the application of less demanding CSM-DT shall be permitted if the proposer can demonstrate that the use of barriers ... allows the same level of safety to be achieved"

What **barriers** <u>external to HB Detector</u> enable to prevent, detect and, when necessary, correct emerging failures of wheelsets and axleboxes (e.g. wheel bearing fatigue, loss of bearing lubrication in axleboxes, defective brakes or any other cause) that can lead to Hot Box Event hazard?

TS under assessment: onboard Hot Box Detection system 5. Applicability of CSM-DT, based on point 2.5.9.

Barriers external to HB Detector:

- (a) Appropriate maintenance and operational procedures of SMS (*Predeparture checks, periodic planned maintenance inspections and preventive maintenance operations*)
- (b) Those SMS provisions either reduce frequency of occurrence of HB hazard or mitigate the severity of potential consequences of that hazard
- (c) Effectiveness of those external barriers has a direct impact on actual frequency of occurrence of HB events → proposer (i.e. RU) has statistics of actual frequency of occurrence of HB events for its fleet
- → Knowledge of frequency of occurrence of HB events can thus be used to derive permissible frequency of occurrence of failures of "trainborne HB Detector and HB Event indication"

TS under assessment: onboard Hot Box Detection system 6. Setting up of applicable category of CSM-DT

N°		HAZARD – Conse- quence at level of technical system	Consequences at train level	Potential accident	Potential for at least 1 fatality	Consequence limited to a specific area of train	Associated CSM DT
1.		Hot Box Event not detected by technical system when required	In case of a Hot Box Event, the driver is not informed and cannot stop the train safely.	FireDerailment	YES (i.e. risk not broadly acceptable)	NO (whole train exposed to risk)	10 ⁻⁹ h ⁻¹
2.		Spurious detection of a Hot Box Event	 Driver required to stop the train whereas not necessary Traffic operation disturbed 	No – Specific operational procedures must be defined to prescribe the actions of the driver when a Hot Box Detector reports a false alarm	NO (i.e. risk is broadly acceptable)	Not applicable	Not applicable
3.							
4.							
5.		Hot Box Event may not be detected on time to permit actions to be put in place to ensure the safety	In case of a Hot Box Event, the driver is informed too late and might not stop the train safely.	FireDerailment	YES (i.e. risk not broadly acceptable)	NO (whole train exposed to risk)	10 ⁻⁹ h ⁻¹
6.		Not applicable. The hot box detection is a binary output	Not applicable. The hot box detection is a binary output	Not applicable	Not applicable	Not applicable	Not applicable

62

TS under assessment: onboard Hot Box Detection system 6. Setting up of applicable category of CSM-DT

In conclusion, if following <u>"logical condition"</u> is met:

 (a) the wheelset or axlebox under the supervision of the HB Detector is overheating (i.e. there is "Hot Box Event');

AND during the same period of time (14)

 (b) either HB Detector is defective and does not report the event OR there is a failure of "indication of HB Event to driver" or both of these failures;

there is "a <u>credible potential</u> to lead <u>directly</u> to a catastrophic accident" ... "typically affecting a large number of people and resulting <u>in multiple fatalities</u>" Derailment, fire

The associated risk is acceptable if the frequency of occurrence of that logical condition is "... demonstrated to be less than or equal to 10⁻⁹ per operating hour".

The most credible CSM DT category applicable to that logical condition is therefore 10⁻⁹ h⁻¹

TS under assessment: onboard Hot Box Detection system 6. Setting up of applicable category of CSM-DT

Logical condition leading directly to a failure of the trainborne hot box detection function.

Use of Faut Trees (FTA) for Quantitative Allocation

Assumption for the risk assessment

Available information for risk assessment

	N°	Basic events	Description in the FTA	Rate of occurrence	Source of information	D&NT	Additional explanations
	1.	Hot Box Event	Hot Box Event (e.g. wheelset or axlebox) overheating (this shall trigger the hot box detection)	10 ⁻⁵ h ⁻¹	Monitoring through experience on similar trains (REX)	10 h	Operational and maintenance provisions are put in place in the RU SMS to permit the detection of wheelset and axlebox failures for the first journey with the train (i.e. pre-departure checks). The driver is also trained for detecting unusual changes of dynamic behaviour of the train and suspicious train vibrations
*****	2.	HBE lamp	Hot Box Event lamp burnt	10 ⁻⁷ h ⁻¹	IEC 62380 standard	10 h	The driver's cabin is tested every day, including the good functioning of the Hot Box Event indication lamp. Diversity in the indication can also be envisaged, e.g. use of two lamps – one for indicating a Hot Box Event, the other one for informing that the Hot Box Detection system is defective
*****	3.	HBD loss of measure- ment	Hot Box Detector does not longer detects measure the temperature	To define by risk asses- sment	Shall be demon- strated by the supplier of Hot Box Detector	300 h	To be tested once a month during regular maintenance activities. This could be an initial objective in order not to constraint the train operation based on this data. Then depending on the final failure rate allocated by the risk assessment (e.g. if it appears not to be feasible), this number may be changed for example by imposing more constraints on either the train operation or on the maintenance of the Hot Box Detection
	4.	HBD false measure	Hot Box Detector provides an incorrect temperature measurement	To define by risk asses- sment	Shall be demon- strated by the supplier of Hot Box Detector	300 h	To be tested once a month during regular maintenance activities
	5.	i. Communi- cation failure HBE lighting signal not delivered to driver through communication means interval define by risk asses- sment		To define by risk asses- sment	Shall be verified for implement- ation of Hot Box Detection function	300 h	Different technical options are possible for informing the driver. The communication of information shall satisfy the requirements identified in the current risk assessment

CASE 1 – Use of a single trainborne Hot Box Detector

	Iteration o	Achieved top event				
input data	λ _{HBD Total} (100%)	λ _{HBD F} (50%)	λ _{HBD L} (50%)	$\lambda_{ ext{top event}}$		
Т _{нво L} = 300 h	2.0*10 ⁻⁷ h ⁻¹	$1.0*10^{-7} h^{-1}$	1.0*10 ⁻⁷ h ⁻¹	3.2*10 ⁻¹⁰ h ⁻¹		
Т _{нво F} = 300 h	4.0*10 ⁻⁷ h ⁻¹	2.0*10 ⁻⁷ h ⁻¹	2.0*10 ⁻⁷ h ⁻¹	6.3*10 ⁻¹⁰ h ⁻¹		
$\lambda_{HBE} = 10^{-5} h^{-1}$	6.0*10 ⁻⁷ h ⁻¹	3.0*10 ⁻⁷ h ⁻¹	3.0*10 ⁻⁷ h ⁻¹	9.4*10 ^{−10} h ^{−1}		
$\lambda_{Lamp} = 10^{-7} h^{-1}$	7.0*10 ⁻⁷ h ⁻¹	••3.5*10 ⁻⁷ h ⁻¹	3.5*10 ⁻⁷ h ⁻¹	1.1*10 ⁻⁹ h ⁻¹		
Т _{нве} = 10 h (А	detected hot box event is repaired within one day)					
$T_{Lamp} = 10 h$ (Th	he HBE lamp is teste	ed every d <mark>a</mark> y)				

Analysis of results - 10⁻⁹ h⁻¹ target for overall HB function achieved if:

- (1) total failure rate of HB Detector less 6.10⁻⁷ h⁻¹
- (2) HB Detector tested completely every 300 h (monthly maintenance)
- (3) HB event lamp tested every day (i.e. every 10 hours of operation)

6.10⁻⁷ h⁻¹ for a single HB Detector \rightarrow SIL 2 requirements for a TS in CENELEC 5012x standards

CASE 1 – Use of a single trainborne Hot Box Detector

- If cost of a single HB Detector with demanding safety requirements and short maintenance intervals is unacceptable, or
- If loss of single HB Detector is unacceptable from operational and maintenance constraint points of view [disturbs not only traffic operation but requires also unplanned corrective maintenance to be done]
- → use of redundant HB detection architecture with higher frequency of occurrence of failure and longer maintenance intervals can be envisaged
- □ <u>Reminder:</u>
 - (a) **existing infrastructure HB detection system** is **fault tolerant**: if a detector malfunctioning a HB event remains undetected during time needed to reach next trackside HB detector
 - (b) **new trainborne single HB Detection system** is **not fault tolerant**: if detector fails a HB event can no longer be detected by train equipment as long as detector is not repaired [i.e. at planned monthly maintenance Test Interval]

CASE 2 – Redundant trainborne Hot Box Detector architecture – Monthly maintenance

	Iteration o	Achieved top event				
input data	λ _{HBD Total} (100%)	λ _{HBD F} (50%)	λ _{HBD L} (50%)	$\lambda_{ ext{top event}}$		
Т _{нво L} = 300 h	2.0*10 ⁻⁵ h ⁻¹	1.0*10 ⁻⁵ h ⁻¹	1.0*10 ⁻⁵ h ⁻¹	1.06*10 ⁻¹⁰ h ⁻¹		
Т _{нво F} = 300 h	4.0*10 ⁻⁵ h ⁻¹	2.0*10 ⁻⁵ h ⁻¹	2.0*10 ⁻⁵ h ⁻¹	3.94*10 ⁻¹⁰ h ⁻¹		
$\lambda_{HBE} = 10^{-5} h^{-1}$	6.0*10 ^{−5} h ^{−1}	3.0*10 ⁻⁵ h ⁻¹	3.0*10 ⁻⁵ h ⁻¹	8.74*10 ⁻¹⁰ h ⁻¹		
$\lambda_{Lamp} = 10^{-7} h^{-1}$	7.0*10 ⁻⁵ h ⁻¹	3.5*10 ⁻⁵ h ⁻¹	3.5*10 ⁻⁵ h ⁻¹	1.19*10 ⁻⁹ h ⁻¹		
T _{HBE} = 10 h (A detected hot box event is repaired within one day)						
$T_{Lamp} = 10 h \qquad (7$	The HBE lamp is test	ed every day)				

Analysis of results - 10⁻⁹ h⁻¹ target for overall HB function achieved if:

- (1) total failure rate of HB Detector less $6.10^{-5} h^{-1} \rightarrow SIL 0$
- (2) HB Detector tested completely every 300 h (monthly maintenance)
- (3) HB event lamp tested every day (i.e. every 10 hours of operation)

6.10⁻⁵ h⁻¹ 100 times less demanding **BUT** HB Detector must be tested completely, and if necessary restored, every 300 hours [monthly maintenance] \rightarrow Test Interval still short

CASE 2 – Redundant trainborne Hot Box Detector architecture – Maint. every 6 months

Input data	Iteration o	Achieved top event			
input data	λ _{HBD Total} (100%)	λ _{HBD F} (50%)	λ _{HBD L} (50%)	λ top event	
Т _{нво L} = 3600 h	2.0*10 ⁻⁶ h ⁻¹	1.0*10 ⁻⁶ h ⁻¹	1.0*10 ⁻⁶ h ⁻¹	1.40*10 ⁻¹⁰ h ⁻¹	
Т _{нво F} = 3600 h	4.0*10 ⁻⁶ h ⁻¹	2.0*10 ⁻⁶ h ⁻¹	2.0*10 ⁻⁶ h ⁻¹	$5.31^{*}10^{-10}$ h ⁻¹	
$\lambda_{HBE} = 10^{-5} h^{-1}$	5.0*10 ⁻⁶ h ⁻¹	2.5*10 ⁻⁶ h ⁻¹	2.5*10 ⁻⁶ h ⁻¹	8.25*10 ⁻¹⁰ h ⁻¹	
$\lambda_{Lamp} = 10^{-7} h^{-1}$	6.0*10 ⁻⁶ h ⁻¹	1.18* 10 ^{−9} h ^{−1}			
Т _{нве} = 10 h (А	detected hot box e				
$T_{Lamp} = 10 h$ (T	he HBE lamp is test	ed every day)			

Analysis of results - 10⁻⁹ h⁻¹ target for overall HB function achieved if:

- (1) total failure rate of HB Detector less $5.10^{-6} h^{-1} \rightarrow SIL 1$
- (2) HB Detector tested completely, and maintained if needed, every 6 months
- (3) HB event lamp tested every day (i.e. every 10 hours of operation)

5.10⁻⁶ h⁻¹ 10 times less demanding than CASE 1 – Advantage: HB Detector must be tested completely, and if necessary restored, every 6 months [i.e. Much longer TI]

Final decision on allocation of quantitative safety requirements

□ Several alternative technical options analysed → several sets of safety requirements with corresponding acceptable maintenance intervals:

CASE 1: one HB detector $[\lambda < 6.10^{-7} h^{-1}]$ – Monthly complete maintenance **CASE 2(a):** 2 HB detectors $[\lambda < 6.10^{-5} h^{-1}]$ – Monthly complete maintenance **CASE 2(b):** 2 HB detectors $[\lambda < 5.10^{-6} h^{-1}]$ – Complete maintenance every 6 months

- Decision on technical solution to use, and thus necessary maintenance intervals, will be taken based on balance between:
 - (a) Product cost of HB Detector → high quantitative safety requirements imply more expensive TS
 - (b) Frequency, testability and maintenance costs of HB Detector
 - (c) Availability of HB Detector and acceptability of disturbing Traffic Operation in case of loss of a single HB Detector

(Un)completeness of risk assessment

- **Quantitative requirements applicable only to random hardware failures**
- Although it seems extensive, risk assessment is not complete. For example, to install and integrate safely HB detection function in train, additional (safety) requirements, need to be defined by an overall risk assessment:
 - a) point 2.5.7(b) of Reg. 2015/1136 requires that "the risks associated with the systematic failures and systematic faults..." need also to be "... controlled in accordance with safety and quality processes commensurate with the harmonised design target ..."

Application of EN 50126 (-1 & -2) & EN 50657 (& EN 50128 & EN 50129 for onboard signalling equipment)

b) mechanical constraints (size, weight, etc.) + physical interface requirements with train to be specified and communicated to manufacturer

(Un)completeness of risk assessment (continuation)

- Overall risk assessment should determine, based on rolling stock architecture, installation constraints (e.g. most appropriate location on bogies):
 - a) to enable detection of overheating of all four wheelsets of bogy;
 - b) control risks of damaging either HB Detector housing, or wiring interface for indication to driver of a detected HB Event, or both, by projections of ballast, snow and ice in winter conditions that can occur due to dynamic turbulences underneath train created at high speeds
 - c) relevant operational procedures defining actions to be taken in case of loss of communication between HB detectors and Driver's Cabin
 - d) Human Factor aspects related to operational rules in case of HB Event to be analysed and controlled through RU SMS
 - e) etc.
- All relevant requirements for HB Detector, including allocated quantitative safety targets, must be transferred to manufacturer

TS under assessment: onboard Hot Box Detection system 8. Conclusions from the risk assessment and CSM-DT allocation

Predictive risk assessment demonstrates that occurrence of hazard "HB event being undetected by TS when required" is acceptable if:

- (a) allocated quantitative requirement is used for design of HB Detector
- (b) HB detection lamp is tested every day (i.e. every 10 hours) in accordance with a dedicated procedure to be included in Train Driver's Manual
- (c) HB Detector is tested in accordance with appropriate maintenance procedures at time intervals commensurate with defined quantitative requirement

Those procedures need to be clearly written and part of RU SMS

(d) HB detection function is safely integrated within train in compliance with requirements to be identified by additional risk assessment

All safety requirements from risk assessment are registered in Hazard Record in compliance with Reg. 402/2013

More information on Safe Integration can be found in

ERA Clarification Note on Safe Integration (ERA1209-063)

available on the ERA web page:

https://www.era.europa.eu/domains/common-safety-methods/risk-evaluation-assessment-csm_en

Any question can be sent to CSM.risk assessment@era.europa.eu

Disclaimer

This presentation is for the purpose of information only. A binding interpretation of EU law is the sole competence of the Court of Justice of the European Union.

The information contained in this presentation may be re-used provided that the European Union Agency for Railways (ERA) is always mentioned as the source of the material and without altering the original meaning or message of the content. Such acknowledgment must be included in each copy of the material.

The above-mentioned permission does not apply to content supplied by third parties. Therefore, for documents where the copyright lies with a third party, permission for reproduction must be obtained from the copyright holder.

THANK YOU

Moving Europe towards a sustainable and safe railway system without frontiers.

