Temporal Logics and Semantics

Stefano Tonetta

Embedded System Unit, Fondazione Bruno Kessler

ETCS Workshop
Trento October 9, 2008
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
Outline

1. Models and constraints
 - Static formulas
 - Syntax
 - Semantics
 - Temporal formulas
 - Syntax
 - Semantics
 - Controlled natural language
 - Real-time and Hybrid models
 - Methods, state machines, and interleaving semantics
Formal class diagrams

Definition

A class diagram consists of:

Primitive Types A finite set of primitive types $\mathcal{T} = \{\tau_1, \ldots, \tau_h\}$.

Classes A finite set of classes $C = \{c_1, \ldots, c_n\}$.

Attributes For each class $c \in C$, a finite set of attributes $c.A = \{c.a_1, \ldots, c.a_m\}$. Every attribute $c.a$ has

- a type $c.a.TYPE \in C \cup \mathcal{T}$;
- a multiplicity $c.a.MULTIPLICITY$ that defines a bounded integer range $n..m$, with $0 \leq n \leq m$.
Definition

An object model is an interpretation of all functional symbols of a class diagram. I.e., for all class \(c \in C \), the object model defines the objects of class \(c \), and, for all objects \(o \) of class \(c \), for all attributes/associations \(a \) of \(c \), the object model assigns a (type-consistent) value to \(o.a \).
From class diagram to object models

Example

An object model assigns to each balise group a position (for example 15), a set of balises (for example \{b_1, b_2, b_3\}), a message (for example 001110...).
A static constraint specifies if an object model is bad or good.
Static constraint

A static constraint specifies if an object model is bad or good.

Definition

A static constraint is a set of object models.
A static constraint specifies if an object model is bad or good.

Definition

A static constraint is a set of object models.
A static constraint specifies if an object model is bad or good.

Definition

A static constraint is a set of object models.
A behavior is an (infinite) sequence of object models.
A behavior is an (infinite) sequence of object models.
Definition

A behavior is an (infinite) sequence of object models.
A temporal constraint specifies if a behavior is bad or good.
Temporal constraint

A temporal constraint specifies if a behavior is bad or good.

Definition

A temporal constraint is a set of behavior.
A temporal constraint specifies if a behavior is bad or good.

Definition

A temporal constraint is a set of behavior.
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
Constraints as formulas

- We use formulas to represent static and temporal constraints.
- We formally define syntax and semantics.
- **Syntax**: how a formula can be built.
- **Semantics**: what the formula means.
- Static formulas are a fragment of first-order logic.
- Temporal formulas are a fragment of first-order temporal logic.
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
\[ma_1 . \text{balises}.size = 2 \land ma\.balises[2] = ma\.balises[1] + 15 \]

\[ma_1 . \text{balises}.size = 2 \quad ma_1 . \text{balises}[2] = ma_1 . \text{balises}[1] + 15 \]

\[ma_1 . \text{balises}.size \]

\[ma_1 . \text{balises}[2] \quad ma_1 . \text{balises}[1] \]

\[ma_1 \quad 2 \quad 1 \quad 15 \]

\[ma_1 . \text{balises} \quad \text{size} \quad 2 \quad \land \quad 1 \quad [\quad] \quad 15 \quad \text{SYMBOLS} \]
Vocabulary

- Syntax depends on the class diagram.
- We assume to have constants, functions, and predicates for primitive symbols (example: $0, 1, 2, TRUE, +, *, >, \leq, ...$).
- We assume a given set of variables V_τ for each type $\tau \in C \cup T$.
Terms may be:

- Variables;
- Constants;
- Functions: $f(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are terms;
- Attributes: $t.a$, where t is a term;
- Arrays: $t.a[i]$ and $t.a.size$, where t is a term and a has max multiplicity > 1.

Example

x
$x + y$
train.position
$\text{train.position} + y$
...

Stefano Tonetta (FBK) TL & Semantics October 9, 2008 15 / 47
Static formulas

Formulas may be:

- **Relations**: $R(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are terms;
- **Comparisons**: $t_1 = t_2$, where t_1 and t_2 are terms;
- **Collection membership**: $t_1 \in t_2$, where t_1 and t_2 are terms;
- **Boolean Combinations**: $\neg \varphi_1$ and $\varphi_1 \land \varphi_2$: where φ_1 and φ_2 are formulas;
- **Quantifiers**: $\forall v : \tau. \varphi$ and $\forall v \in t. \varphi$, where φ is a formula, v a variable, t a term.

Example

$x > 10$

$train_1.current_section \in train_1.ma.sections$

$\forall t_1 : Train. \forall t_2 : Train. (t_1.position = t_2.position)$

...
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
Interpretation of terms

- Interpretation given by an object model M, and an assignment μ to variables.
- Extended to all terms: for example, if $\mathcal{I}(t) = train_1$ and $\mathcal{I}(position)(train_1) = 15$, then $[[t.a]] = 15$.
Interpretation of terms

Formally,

Variables \([v]_{M,\mu} = \mu(v)\).

Constants \([c]_{M,\mu} = I(c)\).

Functions \([f(t_1, \ldots, t_n)]_{M,\mu} = I(f)([t_1]_{M,\mu} \cdots [t_n]_{M,\mu})\).

Simple Attributes If \(I(a)([t]_{M,\mu}) = [q]\), then \([t.a]_{M,\mu} = q\).

Multiple Attributes \([t.a]_{M,\mu} = I(a)([t]_{M,\mu})\)
\([t.a.size]_{M,\mu} = |I(a)([t]_{M,\mu})|\).
Models of static formulas

- An object model satisfies a formula if the interpretation of the terms makes the formula true.
Models of static formulas

- Formally,

 Relations \(\langle M, \mu \rangle \models R(t_1, \ldots, t_n) \iff \mathcal{I}(R)([[t_1]]_{\langle M, \mu \rangle} \cdots [[t_n]]_{\langle M, \mu \rangle}) \) holds.

 Comparisons \(\langle M, \mu \rangle \models t_1 = t_2 \iff [[t_1]]_{\langle M, \mu \rangle} = [[t_2]]_{\langle M, \mu \rangle} \).

 Collection membership \(\langle \omega, \mu \rangle \models t_1 \in t_2 \iff \text{for some } i, 1 \leq i \leq |[[t_2]]_{\langle \omega, \mu \rangle}|, [[t_1]]_{\langle \omega, \mu \rangle} = [[t_2[i]]]_{\langle \omega, \mu \rangle} \).

 Boolean Combinations \(\langle M, \mu \rangle \models \neg \varphi_1 \iff \langle M, \mu \rangle \not\models \varphi_1 \),

 \(\langle M, \mu \rangle \models \varphi_1 \land \varphi_2 \iff \langle M, \mu \rangle \models \varphi_1 \) and \(\langle M, \mu \rangle \models \varphi_2 \).

 Quantifiers \(\langle M, \mu \rangle \models \forall v \in t.\varphi \iff \text{for all } q \in [[t]]_{\langle M, \mu \rangle}, \langle M, \mu[q/v] \rangle \models \varphi \).

- The models of a closed formula are all object models that satisfy the formula.

- Thus, a static formula represents a static constraint.
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
Temporal terms and expressions

Definition
A temporal term of type τ either is an L_D term of type τ or is an expression $\text{next}(t)$, where t is a L_D term of type τ.

Definition
Transition expressions are like static formulas but may contain the next operator.
Regular expressions

Transition expressions Any transition expression is a regular expression.

Empty word ϵ is a regular expression.

Regular Operators If r_1 and r_2 are regular expressions, then r_1^*, $r_1; r_2$, $r_1 : r_2$, $r_1 | r_2$, $r_1 && r_2$ are regular expressions.
Formulas

Transition expressions Any transition expression is a formula.

Boolean Combinations If φ_1 and φ_2 are formulas, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$ are formulas.

Temporal Operators If φ_1 and φ_2 are formulas, then $X \varphi_1$, $\varphi_1 U \varphi_2$ are formulas.

Suffix Operators If r is a regular expression and φ is a linear temporal formula, then $\{r\}\varphi$ is a formula.
Outline

1. Models and constraints

2. Static formulas
 - Syntax
 - Semantics

3. Temporal formulas
 - Syntax
 - Semantics

4. Controlled natural language

5. Real-time and Hybrid models

6. Methods, state machines, and interleaving semantics
Temporal terms

Term A term is interpreted as in the static version.

Next Term A next term \(\text{next}(t) \) is interpreted at the step \(i \) with the value of \(t \) at step \(i + 1 \).

Transition Expressions The models of transition expressions are defined as for the static formulas.

\[
v = \text{next}(v)
\]
Regular expressions

\[\epsilon \]

\[r^* \]

\[r \]

\[r_1; r_2 \]

\[r_1 \]

\[r_2 \]
Regular expressions

\[r_1 : r_2 \]

\[r_1 \mid r_2 \]

\[r_1 \land r_2 \]

\[r_1, r_2 \]
Regular expressions

\[\langle \omega, \mu \rangle \models^{i \cdots j} \epsilon \text{ iff } i = j. \]
\[\langle \omega, \mu \rangle \models^{i \cdots j} r^* \text{ iff } i = j \text{ or there exists } k, i < k \leq j, \]
\[\langle \omega, \mu \rangle \models^{i \cdots k} r, \langle \omega, \mu \rangle \models^{k \cdots j} r^*; \]
\[\langle \omega, \mu \rangle \models^{i \cdots j} r_1; r_2 \text{ iff there exists } k, i \leq k \leq j, \]
\[\langle \omega, \mu \rangle \models^{i \cdots k} r_1, \langle \omega, \mu \rangle \models^{k \cdots j} r_2; \]
\[\langle \omega, \mu \rangle \models^{i \cdots j} r_1 : r_2 \text{ iff there exists } k, i < k \leq j, \]
\[\langle \omega, \mu \rangle \models^{i \cdots k} r_1, \langle \omega, \mu \rangle \models^{k-1 \cdots j} r_2; \]
\[\langle \omega, \mu \rangle \models^{i \cdots j} r_1 | r_2 \text{ iff } \langle \omega, \mu \rangle \models^{i \cdots j} r_1 \text{ or } \langle \omega, \mu \rangle \models^{i \cdots j} r_2; \]
\[\langle \omega, \mu \rangle \models^{i \cdots j} r_1 \& \& r_2 \text{ iff } \langle \omega, \mu \rangle \models^{i \cdots j} r_1 \text{ and } \langle \omega, \mu \rangle \models^{i \cdots j} r_2. \]
Temporal formulas

$X \varphi$

$\varphi_1 U \varphi_2$

$\{ r \} \varphi$

$r \varphi$

Stefano Tonetta (FBK)
Temporal formulas

Boolean $\langle \omega, \mu \rangle \models \neg \varphi_1$ iff $\langle \omega, \mu \rangle \not\models \varphi_1$, $\langle \omega, \mu \rangle \models \varphi_1 \land \varphi_2$ iff $\langle \omega, \mu \rangle \models \varphi_1$ and $\langle \omega, \mu \rangle \models \varphi_2$.

Temporal Operators
$\langle \omega, \mu \rangle \models X \varphi$ iff $\langle \omega^1, \mu \rangle \models \varphi$;
$\langle \omega, \mu \rangle \models \varphi_1 U \varphi_2$ iff there exists $i \geq 0$ such that $\langle \omega^i, \mu \rangle \models \varphi_2$ and for all $0 \leq j < i$ $\langle \omega^j, \mu \rangle \models \varphi_1$.

Suffix Operators $\langle \omega, \mu \rangle \models \{ r \} \varphi$ iff there exists $i \geq 0$ such that $\langle \omega^i, \mu \rangle \models \varphi$ and $\langle \omega, \mu \rangle \models^0..i+1 r$.
Definition

Given a formula φ, the satisfiability problem consists of finding a sequence of models ω, and an assignment μ to the free variables of φ, such that $\langle \omega, \mu \rangle \models \varphi$.

Formula $\xrightarrow{\text{SAT}}$ Model
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
Standard abbreviations

- $\varphi_1 \lor \varphi_2 \equiv \neg(\neg\varphi_1 \land \neg\varphi_2)$;
- $\varphi_1 \rightarrow \varphi_2 \equiv \neg\varphi_1 \lor \varphi_2$;
- $\exists x \in t.(\varphi) \equiv \neg\forall x \in t.(\neg\varphi)$;
- $t_1 \notin t_2 \equiv \neg(t_1 \in t_2)$;
- $F \varphi \equiv \top \cup \varphi$;
- $G \varphi \equiv \neg F \neg \varphi$;
- $r \mid\rightarrow \varphi \equiv \neg\{r\}\neg \varphi$.

When we specify the constraints of a particular class $c \in C$, we implicitly specify the constraint for every object o of that class, the constraint holds.

In this case, we can use a meaning $o.a.$
English sugaring

We consider the following English expressions as synonyms:

- “always” \(f \equiv Gf \)
- “never” \(f \equiv G\neg(f) \)
- “in the future” \(f \equiv F(f) \)
- “until” \(f_1 \quad “until” \quad f_2 \equiv f_1 Uf_2 \)
- “infinitely many times” \(f \equiv GF(f) \)
- “will eventually hold” \(f \equiv F(f) \)
- “every time” \(f_1 \quad “holds,” \quad f_2 \equiv G(f_1 \to f_2) \)
- “not” \(f \equiv \neg f \)
- “and” \(f_1 \quad “and” \quad f_2 \equiv f_1 \land f_2 \)
- “or” \(f_1 \quad “or” \quad f_2 \equiv f_1 \lor f_2 \)
- “implies” \(f_2 \equiv f_1 \to f_2 \)
- “if” \(f_1 \quad “then” \quad f_2 \quad “else” \quad f_3 \equiv (f_1 \to f_2) \land (\neg f_1 \to f_3) \)
- “for all” \(s \times f, \quad f \equiv \forall x : s(f) \)
- “there exists a” \(s \times \quad “such that” \quad f \equiv \exists x : s(f) \)
- “for all” \(x \quad “in” \quad e, \quad f \equiv \forall x \in e(f) \)
- “there exists” \(x \quad “in” \quad e \quad “such that” \quad f \equiv \exists x \in e(f) \)
Outline

1. Models and constraints
2. Static formulas
 - Syntax
 - Semantics
3. Temporal formulas
 - Syntax
 - Semantics
4. Controlled natural language
5. Real-time and Hybrid models
6. Methods, state machines, and interleaving semantics
So far, models have been sequences of object models.
Timed and hybrid sequences

- So far, models have been sequences of object models.
- We can deal also with timed sequences.
Timed and hybrid sequences

- So far, models have been sequences of object models.
- We can deal also with timed sequences.
- Further step: hybrid sequences:
 - time is weakly monotonic;
 - there are discrete (modes) and continuous variables (timers, dynamics);
 - there are two kind of steps (phases):
 - discrete step: not time elapse, mode change, timer resets;
 - continuous step: time elapses, no mode change, continuous evolution.
Continuous variables

- No existing hybrid semantics for the logic.
- Proposed model: dense, weakly monotonic time, with discrete observations, and predicates over derivatives of linear evolution.
- Good compromise between precision and tractability.
- Example: “in the future der(train.position) > 300”
1 Models and constraints
2 Static formulas
 • Syntax
 • Semantics
3 Temporal formulas
 • Syntax
 • Semantics
4 Controlled natural language
5 Real-time and Hybrid models
6 Methods, state machines, and interleaving semantics
Semantics of methods and state machines

- Semantics tailor-made for ETCS.
- The semantics of a method is given by:
 - an event \textit{start} that is true when the method is activated;
 - a condition \textit{end} that is true when the method has terminated.
- The semantics of a state machine is given by a variable \textit{state} whose domain is the set of states of the state machine.
- We consider only models that satisfy the following conditions:
 - Initially a method is not active.
 - A method can be called only if it is not active.
 - If a state machine is associated to a method, the state changes according to the transitions of the state machine.
Terms for methods and state machines

Methods \(o.m() \)
- true when the method is called

Methods with parameters \(o.m(o_1, \ldots, o_k) \)
- true when the method is called with the given parameters

Methods with return \(o.m() \) returns \(r \)
- true when the method returns a given value.

States (term) \(o.m.State \)
- evaluates to the current state of the state machine of the method.
Asynchronous interleaving semantics

- We adopt an asynchronous model.
- At every moment only one entity can be active.
- The entities are the objects, the environment, and the time (for continuous evolution).
- Only one method can be active at a time.
- The active entity determines the set of variables that can change.
 - environment: any variable.
 - time: only continuous variable.
 - method with state machine: only variable affected by transition’s effect.
 - method without state machine: any variable (most abstract assumption).
Summary and discussion

- Language trades off
 1. expressiveness with complexity of analysis.
 2. expressiveness with usability.
- Built on standard temporal logics.
- Tailor-made for ETCS.
- Research directions on hybrid models and on formal analysis.