DANGEROUS GOODS TRANSPORTATION
PRACTICAL RISK ANALYSIS APPROACH

Dr. Rapik Saat, Ph.D., PMP
Rail Transportation and Engineering Center (RailTEC)
University of Illinois at Urbana-Champaign, U.S.A.
Outline

• Transportation Risk Management Framework
• Dangerous Goods Transportation Practical Risk Analysis Approach
• Example Dangerous Goods Railway Transportation Risk
• Appendix
Transportation Risk Management Framework

- A collection of processes and methodologies for identifying, assessing and reducing transportation risks

- Fundamental questions:
 - What can go wrong?
 - How likely it is?
 - What are the consequences?
 - How to effectively use resources to reduce risks?

Note: Transportation Risk Management (TRM) framework shown on the right is modified from CCPS (2008) – Guidelines for Chemical Transportation Safety, Security and Risk Management

© 2014 ERA’s 2nd Workshop on Risk Evaluation and Assessment - Transport of Dangerous Goods
Risk Analysis

• Consideration of causes and sources of risk, and their consequences and likelihood

• Methods can be
 – Qualitative,
 – Semi-quantitative, or
 – Quantitative risk analysis
Dangerous Goods Transportation
Practical Risk Analysis Approach

INITIATING EVENT
Accident or Non-Accident

RELEASE EVENT

CONSEQUENCE
Initiating Event: Accidents

- Example types of accident-initiated events

<table>
<thead>
<tr>
<th>Road</th>
<th>Rail</th>
<th>Waterway</th>
<th>Air</th>
<th>Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision</td>
<td>Collision</td>
<td>Collision</td>
<td>Crash</td>
<td>External Impact</td>
</tr>
<tr>
<td>Overturning</td>
<td>Derailment</td>
<td>Grounding</td>
<td>Cargo Shifting</td>
<td></td>
</tr>
<tr>
<td>Grade Crossing</td>
<td>Grade Crossing</td>
<td>Ramming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo Shifting</td>
<td>Collision</td>
<td>Capsizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Potential causes:
 - Infrastructure defects (e.g. road/rail track)
 - Equipment defects
 - Human factors
 - Navigational failures
 - Control system failures
 - External events
Initiating Event: Non-Accidents

- Potential causes:
 - Improper securement
 - Corrosion
 - Metallurgical failure
 - Overpressure
 - Equipment component failures (e.g. valves, rupture disks, fittings)
 - Overfilling or underfilling
 - Relief device activation due to surges
 - Contamination
 - Temperature changes
 - Control system failures
Release Incident

- The loss of containment of material
Consequence

- The direct results or impacts of an event
- Outcome of an event affecting objectives
- Examples:
 - Fatalities
 - Injuries
 - Property damage
 - Environmental impacts
 - Business interruption
 - Evacuation
 - Distribution system disruption
 - Negative publicity
 - Excess regulations
Example Dangerous Goods Railway Transportation Risk

- Basic risk equation = probability of an event multiplied by the consequence of that event
 \[R = P_A \times P_{R|A} \times Q \times C \]

- Probability of a hazardous materials (HM) release event is typically the product of a series of other probabilities
 - Probability of a derailment occurring \((P_A) \) \(\text{Train Accident} \)
 - Probability that the HM car releases product \((P_{R|A}) \) \(\text{Tank Car} \)
 - Probability distribution of quantity lost \((Q) \)
 (can also be expressed as average quantity lost)

- Consequences to people, property, or the environment is determined by what, where and when the material is spilled \((C) \)
Environmental Risk Analysis of Railway Transportation of Dangerous Goods

- Tank Car Derailment
- Release from Tank Car
- Release Quantity as Percentage of Tank Car Capacity
- Soil Type
- Depth to Groundwater, (ft)
- Population Class
- Traffic Density Category (MGTM)

Environmental Cleanup Cost:
- Clay: 0-5%
- Silt: 5-20%
- Sand: 20-50%
- 80-100%

Evacuation Cost:
- Remote: 10
- Rural: 20
- Suburban: 50
- Urban: 100
- High: 200
- Extremely High: ≥ 100

Train Delay Cost:
- 0.1-4.9
- 5-9.9
- 10-19.9
- 20-39.9
- 40-59.9
- 60-99.9
- ≥ 100

Accident-Caused Release Rate
- Yes
- No

Consequences
- Environmental Cleanup Cost
- Evacuation Cost
- Train Delay Cost

Probability Analysis

- Accident-caused release rate metric was used to estimate the annual rate of a release event:

\[P_R = P_A \times P_{R|A} \times M \]

where:

- \(P_A \) = tank car derailment annual rate per car-mile (Anderson & Barkan 2004)
- \(P_{R|A} \) = tank car conditional probability of release (Treichel et al. 2006)
- \(M \) = total number of car miles

References:

Chemicals of Interest’s Routes & Annual Car Miles

<table>
<thead>
<tr>
<th>Commodity Name</th>
<th>Annual Car Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile</td>
<td>1,406,133</td>
</tr>
<tr>
<td>Benzene</td>
<td>1,541,225</td>
</tr>
<tr>
<td>Butyl Acrylates</td>
<td>2,910,782</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>2,036,186</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3,013,480</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>881,173</td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td>649,216</td>
</tr>
<tr>
<td>Methanol</td>
<td>16,361,224</td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td>3,944,250</td>
</tr>
<tr>
<td>Styrene</td>
<td>6,167,904</td>
</tr>
<tr>
<td>Toluene</td>
<td>2,604,849</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>5,033,087</td>
</tr>
<tr>
<td>Xylenes</td>
<td>9,234,437</td>
</tr>
</tbody>
</table>
Accident-caused Release Rate Summary

(The “probability” or frequency term in the risk definition)

- Methanol: 0.647
- Xylenes: 0.365
- Vinyl Acetate: 0.199
- Methyl Methacrylate: 0.156
- Styrene: 0.152
- Ethanol: 0.119
- Toluene: 0.103
- Cyclohexane: 0.081
- Butyl Acrylates: 0.072
- Acrylonitrile: 0.050
- Benzene: 0.038
- Ethyl Acetate: 0.035
- Ethyl Acrylate: 0.026

Accident-Caused Release Rate per Year
Consequence Analysis

- Impacts to Soil and Groundwater
 - Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used to estimate soil and groundwater cleanup cost.
 - Accounts for physicochemical properties, soil type and depth to groundwater.

- Population Exposure
 - US Emergency Response Guidebook (ERG) was used to determine hazard area.
 - Impact in terms of evacuation cost was estimated.

- Train Delay
 - Estimate impact due to additional costs related to locomotives, railcars, fuel and labor.
 - Accounts for traffic density to estimate total number of trains delayed.

References:

Total Expected Consequence Cost

- Expected Cleanup Cost + Evacuation Cost + Train Delay Cost

(The consequence term in the risk definition)

- Cyclohexane: 1,239,038
- Xylenes: 1,069,583
- Toluene: 907,833
- Acrylonitrile: 898,507
- Ethyl Acrylate: 859,578
- Ethyl Acetate: 882,007
- Methyl Methacrylate: 844,454
- Benzene: 815,172
- Methanol: 795,799
- Styrene: 775,925
- Butyl Acrylates: 643,117
- Vinyl Acetate: 627,185
- Ethanol: 559,041

© 2014 ERA's 2nd Workshop on Risk Evaluation and Assessment - Transport of Dangerous Goods
Risk Estimation

- Accident-Caused Release Rate x Total Expected Consequence Cost

Annual Release Risk ($)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Annual Release Risk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>515,051</td>
</tr>
<tr>
<td>Xylenes</td>
<td>390,711</td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td>131,756</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>124,871</td>
</tr>
<tr>
<td>Styrene</td>
<td>118,081</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>99,801</td>
</tr>
<tr>
<td>Toluene</td>
<td>93,545</td>
</tr>
<tr>
<td>Ethanol</td>
<td>66,641</td>
</tr>
<tr>
<td>Butyl Acrylates</td>
<td>46,187</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>45,168</td>
</tr>
<tr>
<td>Benzene</td>
<td>30,998</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>30,744</td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td>22,075</td>
</tr>
</tbody>
</table>

Risk per Ton-Mile (¢)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Risk per Ton-Mile (¢)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>0,048</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0,042</td>
</tr>
<tr>
<td>Toluene</td>
<td>0,035</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>0,034</td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td>0,033</td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td>0,032</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>0,032</td>
</tr>
<tr>
<td>Methanol</td>
<td>0,031</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>0,024</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0,022</td>
</tr>
<tr>
<td>Benzene</td>
<td>0,020</td>
</tr>
<tr>
<td>Styrene</td>
<td>0,020</td>
</tr>
<tr>
<td>Butyl Acrylates</td>
<td>0,016</td>
</tr>
</tbody>
</table>
Risk Profile

Example risk profile for rail transportation of methanol
Acknowledgements

ASSOCIATION OF AMERICAN RAILROADS

BNSF RAILWAY

U.S. Department of Transportation
Federal Railroad Administration

Nexttrans

NURail Center

© 2014 ERA’s 2nd Workshop on Risk Evaluation and Assessment - Transport of Dangerous Goods
Thank You for Your Attention!

Dr. Rapik Saat, Ph.D., PMP
Rail Transportation and Engineering Center (RailTEC)
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
Office: +1(217) 333-6974
Email: mohdsoaat@illinois.edu

Rail Transportation and Engineering Center (RailTEC)
http://ict.illinois.edu/railroad