TAP TSI and TAF TSI

Sector Handbook for the Communication between Railway Undertakings and Infrastructure Managers
(RU/IM Telematics Sector Handbook)

Submitted on 6th May 2014

Project: TAP/TAF Phase Two

Version: 1.0
Date: 6th May 2014
Author: Christian Weber (RU/IM Work Stream Leader and TG2 Leader)
 Lars Stenegard (TG1 Leader)
 Andreas Abegg (TG3 Leader)
 Seid Maglajlic (TG4 Leader)

Owner: RU/IM Telematics Joint sector Group
Client: Sector
1. Document History

Document Location

This is the final version of a document, the original version of which is on Christian Weber’s PC only.

This working document will be uploaded to the project extranet (members’ area). The final document will be published on website related to RU/IM Telematics. [http to be incorporated when defined]

This Sector Handbook has to be accessible to all TAP and TAF actors.

Revision History

Date of this revision: 6th May 2014
Date of next revision: not planned

<table>
<thead>
<tr>
<th>Revision date</th>
<th>Summary of Changes</th>
<th>Changes marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.0.01 26/11/2013</td>
<td>Draft version on basis of Implementation Guide v0.53 and outcomes of Telematic Groups TG1 (Planning), TG2 (Operation), TG3 (IT and Reference Files), TG4 (Train Identifiers) from September 2012 till December 2013</td>
<td></td>
</tr>
<tr>
<td>V0.02 07/02/2014</td>
<td>Draft version 0.02 including some comments received from TGs experts</td>
<td></td>
</tr>
<tr>
<td>V0.03 27/02/2014</td>
<td>Explanation on optional status of new identifiers (chapter 6)</td>
<td></td>
</tr>
<tr>
<td>V0.04 06/05/2014</td>
<td>Aligned with Application Guide v0.06 approved by JSG on 06/05/2014</td>
<td></td>
</tr>
</tbody>
</table>

Approvals

This document requires the following approvals.

<table>
<thead>
<tr>
<th>Name/Entity</th>
<th>Title/Remark</th>
<th>Approval</th>
<th>Date of Issue</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU/IM Telematic Group Leaders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAP Project Team</td>
<td>Project Manager, Work Stream</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leaders

RU/IM Telematics JSG

TAP Steering Committee Chairs, members and alternates

Reference
This document is created with reference to the following legal documents.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
<th>Remark</th>
<th>Date of Issue</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP TSI</td>
<td>Commission Regulation (EU) No 454/2011 on the technical specification for interoperability relating to the subsystem ‘telematics applications for passenger services’ of the trans-European rail system and in particular the annexed ERA Technical Document B.30</td>
<td>For RU/IM functions only</td>
<td>05/05/2011</td>
<td>1</td>
</tr>
<tr>
<td>Amendment to TAF TSI</td>
<td>Commission Regulation (EU) No 328/2012 amending Regulation (EC) No 62/2006 concerning the technical specification for interoperability relating to the Telematics applications for freight subsystem of the trans-European conventional rail system and in particular the annexed ERA Technical Document Appendix F</td>
<td>For RU/IM functions only</td>
<td>17/04/2012</td>
<td></td>
</tr>
<tr>
<td>Amendment to TAF TSI</td>
<td>Commission Regulation (EU) No 280/2013 amending Regulation (EC) No 62/2006 concerning the technical specification for interoperability relating to the telematic applications for freight subsystem of the trans-European conventional rail system</td>
<td>For RU/IM functions only</td>
<td>22/03/2013</td>
<td></td>
</tr>
<tr>
<td>Amendment to TAP TSI</td>
<td>Commission Regulation (EU) No 1273/2013 amending Regulation (EU) No 454/2011 on the technical specification for interoperability relating to the subsystem ‘telematics applications for passenger services’ of the trans-European rail system</td>
<td>For RU/IM functions only</td>
<td>06/12/2013</td>
<td></td>
</tr>
</tbody>
</table>
Applications for passenger services’ of the trans-European rail system

Draft revised TAF TSI

Preliminary draft 1.0 of the Technical specifications of Interoperability relating Telematics Applications for Freight (TAF TSI) (Ref. ERA/CON/2013-03/INT) 18/07/2013

Sources

This document was created with the input from the TAF TSI Working Groups WG1, WG2, WG3, WG5, WG10, TAP Phase 1 Expert Groups EG1, EG2, EG3 and TAP Phase 2 Telematic Groups TG1, TG2, TG3, TG4 under the leadership of Stephan Breu (DB Netz, DE), Ivana Tomekova (RNE, AT/SK), Helmut Hantak (RNE, AT), Daniel Haltner (Trasse Schweiz, CH), Rik Kapoor (Network Rail, UK), Christian Weber (SNCF, FR), Andreas Abegg (SBB, CH), Sebastian Naundorf (DB Regio, DE), Lars Stenegard (RNE), Seid Maglajlic (RNE).

Distribution

This document is distributed to:

<table>
<thead>
<tr>
<th>Name/ Entity</th>
<th>Title/ Remark</th>
<th>Date of Issue</th>
<th>Version</th>
</tr>
</thead>
</table>

Document maintenance

This document will be maintained by the <sector RU/IM governance entity> when governance will be defined beginning 2014.

In the meantime, any actor detecting errors, needing clarifications or proposing additions or updates can contact [to be defined].
2. Table of Contents

1. Document History ... 3
2. Table of Contents ... 6
3. Management Summary ... 7
4. Who should read what .. 11

Part A - Prerequisites .. 13
5. Background & Purpose of this Implementation Guide ... 14
6. RU/IM Architecture ... 16
7. End-to-End Processes (High level overview of the processes) 18

8. New identifiers ... 22
 8.1 Introduction ... 22
 8.2 Solution guideline for the industry ... 22
 8.2.1 Business environment (background) .. 22
 8.2.2 Requirements ... 24
 8.2.3 Objects .. 25
 8.2.4 IDs ... 27
 8.2.5 Relationship to existing identifiers ... 33
 8.2.6 Communication with Identifiers ... 34
 8.2.7 Benefits of the Proposed Solution .. 34
 8.2.7.1 Benefits to the Industry ... 34
 8.2.7.2 Full Life cycle .. 34
 8.2.7.3 Reduction in the cost of resolving errors ... 35
 8.2.7.4 Flexibility by separation of IDs ... 35
 8.2.7.5 Customer ... 35
 8.2.8 Conclusion .. Erreur ! Signet non défini.

9. Reference Data .. 35
10. Code Lists ... 50
11. Message Header for RU/IM communication .. 55

Part B - Planning of Trains ... 60
12. Short Term Path Request .. 61
13. Part C - Operation of Trains .. 116
14. Train Preparation .. 117
15. Train Running Information and Forecast ... 125
16. Service Disruption/Train Running Interrupted ... 130
17. Change of Track/Platform ... 133
18. Change of Train Journey Modified .. 135
19. Delay Cause .. 138

Part D - Overall requirements ... 142
20. Passengers information in station area and vehicle area .. 144
21. General remarks .. 145
22. Data quality ... 148
23. Functional Governance .. 150
24. Glossary .. 153
25. List of Appendices .. 154
3. Management Summary

The Sector Handbook describes messages and elements used by the sector for RU/IM communications for planning and operation in freight and passengers traffic.

Some of these messages are basic parameters described in TAF and TAP regulation. Others are out of the scope of the regulation, designed by the sector for the sector and implementation by the actors under agreement.

The "legal" messages, described in TAF and TAP TSI, will be presented in a separate document called Application Guide. This application Guide is foreseen to replace the document B.56 quoted in the TAP revision text approved by RISC in June 2013 (and corresponding to the Implementation Guide delivered during TAP Phase 1 in May 2012). The decision of replacement will be taken by the Steering Committee co-chaired by the Commission and the Sector. In practice, the Application Guide is the subset of the Sector Handbook relevant for TAF and TAP regulation.

The Sector Handbook is targeted to those people within railway companies and their suppliers, who are in charge of organising, supervising and/or carrying out the implementation of the TAP and/or TAF RU/IM Communication within their company.

This document explains the TAP and TAF messages derived from both regulations\(^1\), giving a hint on their legal status, explains their usage; the overall architecture, the establishment and use of the reference data and relevant code list.

The document covers the RU/IM communication of both TAF\(^2\) and TAP. Some parts are specific to one of the TSIs only and are marked accordingly. The relevant TSI for passenger Railway Undertakings (RU), Infrastructure Managers (IM) and Station Managers (SM) is TAP TSI. The relevant TSI for freight RUs and IMs is TAF TSI.

The messages described in the regulation are completed by optional messages out of the regulations that can be used after agreement by the RUs and IMs (and SMs if relevant) for information exchange. These messages are maintained by the Sector Management Office under the authority of the Joint Sector Group.

Messages described in the Sector Handbook are:

<table>
<thead>
<tr>
<th>Message</th>
<th>Relevant article in draft revised TAF TSI</th>
<th>Relevant article in TAP TSI (454/2011)</th>
<th>Out of regulation (by the sector for the sector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consignment Note data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consignment Order message</td>
<td></td>
<td>4.2.1.2</td>
<td></td>
</tr>
<tr>
<td>Path Request</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Based in particular on TAP ERA Technical Document B.30 and TAF ERA Technical Document Appendix F.

\(^2\) Messages specific to RU/RU communication (relevant only to TAF TSI, e.g. wagon order, wagon movement etc) are consequently not covered in this document.
<table>
<thead>
<tr>
<th>Message Type</th>
<th>Code</th>
<th>Related Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Request message</td>
<td>4.2.2.2</td>
<td>4.2.17.1</td>
</tr>
<tr>
<td>Path Details message</td>
<td>4.2.2.3</td>
<td>4.2.17.2</td>
</tr>
<tr>
<td>Path Confirmed message</td>
<td>4.2.2.4</td>
<td>4.2.17.4</td>
</tr>
<tr>
<td>Path Details Refused message</td>
<td>4.2.2.5</td>
<td>4.2.17.5</td>
</tr>
<tr>
<td>Path Cancelled message</td>
<td>4.2.2.6</td>
<td>4.2.17.6</td>
</tr>
<tr>
<td>Path Not Available message</td>
<td>4.2.2.7</td>
<td>4.2.17.8</td>
</tr>
<tr>
<td>Receipt Confirmation message</td>
<td>4.2.2.8</td>
<td>4.2.17.7</td>
</tr>
<tr>
<td>Path Coordination message (Dossier 1)</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Path Section Notification message (Dossier 2)</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Answer Not Possible message</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Utilisation Notification message</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Train Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Freight) Train Composition message</td>
<td>4.2.3.2</td>
<td></td>
</tr>
<tr>
<td>Train Accepted message</td>
<td></td>
<td>Cancelled</td>
</tr>
<tr>
<td>Train Not Suitable message</td>
<td></td>
<td>Cancelled</td>
</tr>
<tr>
<td>Passenger Train Composition Process message</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Train Ready message</td>
<td>4.2.3.3</td>
<td>4.2.14.1</td>
</tr>
<tr>
<td>Train Non Ready message</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Train Position message</td>
<td></td>
<td>Cancelled</td>
</tr>
<tr>
<td>Train At Start message</td>
<td></td>
<td>Cancelled</td>
</tr>
<tr>
<td>Rolling Stock Restriction message</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Train Running Forecast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train Running Forecast message</td>
<td>4.2.4.2</td>
<td>4.2.15.2</td>
</tr>
<tr>
<td>Train Running Information message</td>
<td>4.2.4.3</td>
<td>4.2.15.1</td>
</tr>
<tr>
<td>Train Delay Cause Message</td>
<td>4.2.4.3</td>
<td>4.2.15.1</td>
</tr>
<tr>
<td>Change of track/platform message</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Train journey modification message</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Service Disruption Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train Running Interruption message</td>
<td>4.2.5.2</td>
<td>4.2.16.2</td>
</tr>
<tr>
<td>Shipment ETI / ETA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wagon ETI / ETA message</td>
<td>4.2.6.3</td>
<td></td>
</tr>
</tbody>
</table>
Wagon Movement

<table>
<thead>
<tr>
<th>Message</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagon Release Notice message</td>
<td>4.2.7.2</td>
</tr>
<tr>
<td>Wagon Departure Notice message</td>
<td>4.2.7.3</td>
</tr>
<tr>
<td>Wagon Yard Arrival message</td>
<td>4.2.7.4</td>
</tr>
<tr>
<td>Wagon Yard Departure message</td>
<td>4.2.7.5</td>
</tr>
<tr>
<td>Wagon Exception message</td>
<td>4.2.7.6</td>
</tr>
<tr>
<td>Wagon Arrival Notice message</td>
<td>4.2.7.7</td>
</tr>
<tr>
<td>Wagon Delivery notice message</td>
<td>4.2.7.8</td>
</tr>
</tbody>
</table>

Interchange Reporting

<table>
<thead>
<tr>
<th>Message</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagon Interchange Notice message</td>
<td>4.2.8.2</td>
</tr>
<tr>
<td>Wagon Interchange Sub Notice message</td>
<td>4.2.8.3</td>
</tr>
<tr>
<td>Wagon Received At Interchange message</td>
<td>4.2.8.4</td>
</tr>
<tr>
<td>Wagon Refused At Interchange message</td>
<td>4.2.8.5</td>
</tr>
</tbody>
</table>

Identifiers management

- Update Link message: X X
- Object info message: X X

Error management

- Error message: X X

Enquiry

- Enquiry Train Delay Performance message: Cancelled
- Enquiry Train Forecasts At Reporting Location message: Cancelled
- Enquiry Train Running Forecast message: Cancelled
- Enquiry Train Running Information message: Cancelled
- Enquiry Trains At Reporting Location message: Cancelled
- Enquiry Wagon Deviation message: Cancelled

Each relevant chapter describes if the message is required by TAP, TAF, both or if it is a supporting proposal outside the legal requirements.

Related reference data on locations and companies as well as code lists are explained as well.
This document does not cover any requirement on how company internal applications have to be designed or how communication within companies is done. This is up to every company itself.

The document does not cover any Retail specifications derived from TAP TSI.

Apart from the central reference files, this document is not describing specific applications, as neither TAF nor TAP require the use of a specific commercial product.
4. Who should read what

This chapter provides a non-legally binding guideline to the reader of which parts to read.

<table>
<thead>
<tr>
<th>Readers charged with the task of implementing…</th>
<th>Train Preparation relevant for RUs, IMs and SMs</th>
<th>Train Running(^3) (covering real time data exchange) relevant for RUs, IMs and SMs</th>
<th>Path requests (requesting and attributing paths) relevant for RUs and IMs</th>
<th>Reference data relevant for RUs, IMs and SMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>… should read Chapters…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Part B</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>to facilitate the use of reference data, reading one of these chapters is recommended as well</td>
</tr>
<tr>
<td>Part C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>X (TAP only)</td>
</tr>
<tr>
<td>Part D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>24</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^3\) Train Running covers the running information, forecast, service disruption, change of track, journey modified, delay cause, information in station and vehicles and train location
This document covers the implementation of the RU/IM Communication of TAP TSI and TAF TSI. Normally, explanations given are valid for both TSIs (and hence the passenger and freight sector).

- TAP TSI is relevant for passenger Railway Undertakings (RU), Infrastructure Managers (IM) on whose networks passenger train services can be performed and Station Managers (SM). Companies dealing with the implementation of TAP should read all common parts valid for both TSIs and the specific TAP only sections.
- TAF TSI is relevant for freight RUs and IMs on whose networks freight train services can be performed. Companies dealing with the implementation of TAF should read all common parts valid for both TSIs and the specific TAF only sections.

The following applies in this document to distinguish between common information and content valid for one TSI only.

This sentence is valid for both TSIs.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

This sentence is valid for the implementation of TAP only. This sentence is valid for the implementation of TAF only.

By extension, optional messages out of regulation, designed by the sector to be used by the sector after agreement, are allocated to TAP TSI (resp. TAF TSI) column if they concern passengers (resp. freight) traffic.
Part A - Prerequisites
5. **Background & Purpose of this Sector Handbook**

The TAP and TAF TSI operational part describes the communication between Railway Undertaking (RU), Station Manager (SM) and Infrastructure Manager (IM). In addition to data exchange, the TAF TSI describes business processes for operational interoperability.

The purpose of these standards is to allow railway companies - in the same way for domestic and interoperable\(^4\) services – to

- order train paths
- control and manage their train services (and indirectly staff and fleet)
- Improve customer information provided by RUs and SMs\(^5\)

The implementation of TAF and TAP TSI is one step towards interoperability. Full interoperability requires further steps besides TAF and TAP, as e.g. different operational rules and organisational set ups are valid in the different Member States, requiring different use of these messages. Gradually, these rules should be aligned.

Various requirements in the Passenger Rights Regulation (PRR) and TAP TSI are the basis for these RU/IM communications. For example Annex II Part II of PRR requires passenger RUs to inform their customers about delays and main connecting services during their train ride. Basic Parameter (BP) 4.2.12 of TAP TSI requires SMs to inform passengers about material delays, change of track or platforms, full or partial cancellation of trains and train rerouting. In order to give this information, data exchange between IMs, RUs and SMs is needed, covered by B.30 of TAP TSI. The supporting processes of ordering train paths and informing the IM about the readiness of a train are covered as well, facilitating the interoperable train run for RUs.

There are common functions for planning and operations that are cited in both regulations and are common or similar to both TAP and TAF actors. These functions are:

Common System Components:
- Common Interface \((TAP BP 4.2.21; TAF BP 4.2.14)\)
- Reference Files \((TAP BP 4.2.19; TAF BP 4.2.12)\)

Common/similar messages (or groups of messages):
- Train Running Information \((TAP BP 4.2.15; TAF BP 4.2.4)\)
- Train Running Forecast \((TAP BP 4.2.15; TAF BP 4.2.4)\)
- Service Disruption \((TAP BP 4.2.16; TAF BP 4.2.5)\)
- Train Preparation \((TAP BP 4.2.14; TAF BP 4.2.3)\)
- Adhoc Path Request\(^6\) \((TAP BP 4.2.17; TAF BP 4.2.2)\)

\(^4\) For RU/IM an “interoperable” train service is understood as a train that involves more than one IM and/or more than one RU.

\(^5\) And IMs, in case they provide services as a station manager or in direct communication to passengers.

\(^6\) Also known as Short Term Path Request (STPR)
Specific to TAF are certain parts of train preparation. Specific to TAP are messages intended for customer information.

The application of the Common System Components should be used by both TAF and TAP communities for the operational RU/IM communications. Therefore the related standards and specifications are being aligned.

The Common Messages are based on operational business communications that are also common to the TAF and TAP communities. These operational messages are contained in the message catalogue and have been aligned between TAF and TAP working groups so that they include certain functionality needed in the Passenger and Freight domains.

This implementation guide provides the necessary information to actors of both TAF and TAP to assist in the implementation of the RU/IM functions of both TSIs. The document integrates all parts relevant from the RU/IM part of both regulations in one single guide. It covers prerequisites, such as reference data, the planning part, the operational part and general requirements, e.g. on data quality. Where necessary the document refers to further specifications relevant for the use of the message exchange and described elsewhere. It has to be assured that these referenced documents relevant for implementation are accessible to all actors in a fair and transparent manner. This document also shows the remaining differences between freight and passenger specific processes and/or data according to business needs.

7 The Infrastructure Restriction Notice database is specific to TAF and not covered in this document
6. RU/IM Architecture

The following graph shows the general architecture of the RU/IM communication.

Companies' legacy systems will be linked via an open network\(^8\) (the use of private networks is possible, too), using a common interface (CI). The Common Interface describes a set of functions that are legally required in order to take part in the RU/IM communication.

According to TAP TSI these are:
- message formatting of outgoing messages according to the metadata,
- signing and encryption of outgoing messages,
- addressing of outgoing messages,
- authenticity verification of incoming messages,
- decryption of incoming messages,
- conformity checks of incoming messages according to the metadata,
- handling the single common access to the various databases.

This list is not exhaustive.

The solution to cover the functions of the common interface used by a company can be either a commonly built CI\(^9\) or another development with the required functions. In case a

\(^8\) Any application commonly used by some parties can also be linked (marked CUS in the image). A CUS can be a system that is used on agreement by more than one party to commonly address data exchange according to or additional to TAP and TAF TSI. CUS are not a requirement from TAF nor TAP TSI.

\(^9\) e.g. the CI from the Common Components Groups (“CCG CI”)
company (in the picture: RU 3) develops and builds new applications, the message exchange can directly be according to TAP and TAF TSI, with no additional application (separate interface) needed. The required functions of the Common Interface (as described above) will have to be covered by this application directly. (In case the new application does not support TAP and TAF messages and/or the functions of a CI, a common interface is still needed.)

A company’s CI will have to be in accordance with the external interface specification, describing the communication between CIs. That external interface specification of the reference implementation can be found on [http to be incorporated once available by CCG].

Common reference data (as described in chapter 9) including location codes, company codes and country codes are stored centrally, with different possibilities to access them (e.g. messages, bulk data load, web interface). RUs and IMs will need to have a current subscription to the TAP/TAF governance entity to be given access rights to the reference data service.

Common code lists are enumerated values that are available to be used within the RU/IM messages. These codes are to be used unless a bilateral agreement exists between partners to use other codes. These common Code Lists are published centrally by ERA for the codes messages required by the regulation and by <sector RU/IM governance entity> for the codes used out of the legal TAP/TAF requirements.

Reference data and code lists are mirrored in the companies’ systems (see chapter 9.3 for ways to access the data), i.e. each actor holds a copy of the reference data in its own system environment.

The exchange of bilateral and multilateral agreed messages remains possible as well. This covers the use of both messages and codes in the TAP and TAF messages.
7. End-to-End Processes (High level overview of the processes)

This chapter provides an overview on the main end-to-end process covering planning and operations. The details or any other associated processes (e.g. path cancellation) can be found in the individual chapters (in particular Erreur ! Source du renvoi introuvable., Erreur ! Source du renvoi introuvable., Erreur ! Source du renvoi introuvable., Erreur ! Source du renvoi introuvable.).

Different action of Lead RU / Access Party

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

For passenger, a RU or Access Party can be in charge of the coordination between different RUs. This is a RU/AP chosen by the applicant group (the involved RUs) to initiate the dossier. Consequently in this document, the term “Lead RU” is used to designate this RU/AP. The task of the Lead RU/AP in passenger business is limited to the planning unless agreed otherwise by the RUs involved.

For freight purposes the LRU (Lead RU) – if defined – takes complete responsibility of the whole traffic (e.g. only point of contact to freight customer) whereas for passenger purposes the LRU coordinates with other RUs involved in the journey but does not necessarily take the complete responsibility.

Messages that are exchanged according to TAF are (also) received by the Lead RU.

Main flow (planning)
RU find demand for a train services (same for passenger and freight), or customer makes requests for a service.
RU does its own planning for this service. If needed, the RU aligns this planning with partner RUs (“RU harmonisation”).
RU makes a request to IM(s) for a train path for either overall journey or a section of the journey.
The possibility exists for IMs to coordinate the different sections of the journey (“IM harmonisation”).
IM offers the path section or journey back to the RU.
RU confirms or negotiates with the IM if changes are required until an agreement is reached between RU and IM (this could be for the whole journey or just a section).
Upon agreement the IM confirms the path in its system (booked train).

The booked train is confirmed in the RUs system for production and also in the RUs system for commercial information.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>This might involve publishing the train in the commercial timetable, making the service available for e.g. booking, reservations, publishing the timetable in</td>
<td>This might involve publishing the train in the timetable and offers for freight forwarders.</td>
</tr>
</tbody>
</table>
stations etc. Related processes and standards are related to the Retail part of TAP TSI and can be found in the dedicated retail Implementation Guides.

Subject to contractual agreements between RU, SM, affected RUs and IM or according to national rules, the RU shall transmit relevant technical characteristics (train composition, etc.) and commercial information (offered services, etc.) to the SM and/or IM and/or affected RUs necessary to operate the train and provide passenger information. This information is out of TAP obligations. An optional message can be used. [See § 13.1]

The data and identifiers agreed in planning have to be transferred into operations.

Main flow (operations)

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>Subject to the contractual arrangements between RU, SM, involved RUs and IM and according to national rules. The RU shall be required to send the actual train composition to IM and/or from RU to SM and/or from RU to affected RUs at the time of train operation. This information is out TAP obligations. An optional message can be used. [See § 13.1]</td>
<td>In TAF, the process of sending the train composition from RU to IM and its validation by IM may be required (depending on contractual agreements between IM and RU or according to national rules).</td>
</tr>
</tbody>
</table>

Before the train starts operating the RU informs the IM on the readiness of the booked train to access the network.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>Subject to the contractual arrangements between RU, SM, involved RUs and IM and according to national rules. The RU shall inform the IM (and when relevant the involved RUs or the SM) prior to departure and during the journey of any rolling stock restriction affecting the ability to accommodate the allocated path.</td>
<td>Not concerned</td>
</tr>
</tbody>
</table>

Subject to the contractual arrangements between RU,
SM, involved RUs and IM and according to national rules. The RU shall inform involved RU(s) or SM(s) of any modification or anomaly affecting the services provided to the passengers.

This information is out of TAP obligations. An optional message can be used. The optional Passengers Train Composition message can also be used.

The train starts running and train running information is sent from IM to RU at agreed reporting points. Forecasts are sent from IM to RU and also to neighbouring IM involved for agreed forecast points, which could also be before the train starts running.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

For TAP, the train running information and forecast are also forwarded to Station Managers. In case a train will not arrive on the scheduled track/platform to allow passengers to alight or leave the train, the information of change of track is issued to the SM (to inform the passengers in the station).

In case the train running is interrupted with no forecast possible, the IM informs the RU on the train running interruption. Communication (not TAP/TAF message supported) between RU and IM takes place to agree on the continuation of the train.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

If the agreed continuation of the train involves a re-routing, cancellation, partial cancellation, stop cancellation or adding stops, train journey modification information is issued by IM or RU to the SM. National rules specify if and how the messages are transmitted between IM, RU and SM.

Delay cause messages are used to identify the cause of every single delay affecting the train run.
<table>
<thead>
<tr>
<th>no impact on TAF.</th>
<th>no impact on TAP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The train running information and delay causes are used for passenger information, passenger rights handling and performance regimes.</td>
<td>The delay causes are used to inform the customer and for performance analysis.</td>
</tr>
</tbody>
</table>
8. New identifiers

Note that the new identifiers are optional. Nevertheless, if a company in the sector would like to implement the new unique identification of the objects train or path, the structure in this chapter is binding.

8.1 Introduction

The aim is to have a unique ID for all objects over their complete lifecycle. The lifecycle starts with the planning phase until the phase of accounting. Identifiers in the messages for TAF as set out in Commission Regulation (EC) No 62/2006 and TAP as set out in Commission Regulation (EU) No 454/2011 (as amended by Commission Regulation (EU) No 1273/2013) as well as further industry needs have been analysed and are specified hereafter.

The problems of the identification of trains have been an issue since the early days of the railways. This can be borne out by the considerable amount of time it has taken to complete. During the analysis of the message exchange in TAF/TSI and the existing international systems it became apparent that identifiers for almost all of the elements involved in the transport process are needed. Today’s identifiers (and also the operational train number, in the further text the abbreviation is used: OTN) are not able to cope with the new business processes. More precisely, all IM’s and RUs use some form of train number or train description to identify their trains to operational staff. Depending on the country this code can be used to perform a number of different tasks. This can include information such as a speed of train, priority, route, direction, running order, timetable and some special needs (such as exceptional loads or hazardous goods). If this information changes the train’s number (OTN) must also be changed. While the majority of trains will keep the same number for their entire journey this can often make it worse for the occasion where the number is changed as the company procedures for handling the changes are “ad hoc”. That’s why the train could be lost.

8.2 Solution guideline for the industry

The intentions of the industry are:

1. To create and develop the recommendations and specifications for the coding of Train ID and the other TSI identifiers
2. To find a solution for medium and long term

8.2.1 Business environment (background)

The solution is based on the available documents from TAF/TSI regulation 62/2006, TAP/TSI proposal, and the results of the other TAF/TSI working groups showing that one of the key elements required for the majority of the message types is a “Unique Identifier”
that relates to the train from the business perspective and the link to the path can be managed in a standardized way.

It does not take into account any newer developments of regulations, e.g. the new EU directive 913/2010 from 22.Sept.2010.

In principal the solutions have been designed to be flexible to allow it to be used to meet new regulations as well.

Identifiers in the messages for TAF/TAP and further industry needs have been analysed and are represented in this chapter.

Important note: Both ERTMS/ETCS and GSM-R remain untouched by the proposed solution.

Business change

It is important to mention that the split of the Railway business, according to the Regulation 2012/34 had as a consequence the split of the IMs from the RUs.. The business focus of each separate company changed. The actual situation is the result of several previous steps over the last years. Driven from the split of the national railway companies (see number 1 in Fig. 1) in the 1990ties a consequence is that the existing IT
systems (number 2 in Fig. 1) were distributed to the two or more new companies (Infrastructure Managers and Railway Undertakings).

The scope of the companies differs:

- A RU supplies a service (train) for a customers’/applicants’ need (transport).
- An IM responsibility is to manage the capacity of its network (path).

Together with the split of the companies and the separation of the systems new processes have been developed to cope with the new situation. These processes are based on new (separated) data objects “Path” and “Train” (number 3 in Fig. 1). In former times a data object “Trainpath” has been used in the systems. The consequence was the need to separate into two objects: “Train” and “Path”. In the communication between RU’s, RU and IM, IM’s these separated data objects must be uniquely identified (number 4 in Fig. 1). A new data model has been developed to deal with the changed situation described in TAF/TAP regulation and the results of the other working groups. The new model needs (new) identifiers. Those identifiers are described in this chapter of the Application Guidelines.

8.2.2 Requirements

When establishing this concept, the following high level requirements have been taken into account:

1. Need for identification:
 A new model for identifiers is needed for some of the existing objects in the railway business.
2. Coverage of the whole business process
 The future solution must support all existing railway business processes starting with the end customer request for transportation until the accounting phase
3. Compliance with the results of the other working groups
 The solution must be in compliance with TAF /TSI regulations and the changes coming out from the TAF /TSI working groups WG2, WG3 and WG5.
4. Existing identifiers remain
 Given the need to maintain compatibility with existing systems and infrastructure it was concluded that the usage of the operational train number must be kept “as is”. Each IM would set it in accordance with its national rules and safety standards. International trains could continue to follow UIC leaflets 419-1&2.

The detailed requirements analysis had as a consequence the following demands:

- The identifier must be unique for the planning phase.
- The identifier must be unique for the operational phase.
- The identifier must work for both domestic and interoperable trains.
- The identifier must support splitting and joining of trains.
- The identifier of the train must remain the same when a train is diverted, delayed or disrupted in any way.
- The operational train number should be retained as used today, e.g. in operations within both IMs and RUs. This should be set by the current rules.
- The identifier (in combination with the new business rules for the implementation of the Train ID) must allow operational train number to be changed in transit and guarantee traceability.
- There must be a separate path identity, controlled by the IM.
- The identifier must be unique on its own. It doesn’t rely on data to meet this requirement.
- The format of the core part of the reference is decided by its creator (subject to the rules set out in this document).
There should be as few rules as possible about format for not constraining the future use of the reference.

The identifier has to cover the whole lifecycle of the referenced object.

8.2.3 Objects

It has been agreed on the level of the working groups which produced this result to use the data analysis techniques developed by the IT industry for designing databases.

Computer systems can be made to do very difficult things but only if they are designed correctly. Computer systems often have to deal with complex pieces of information. The analysis process involves understanding the data in its simplest forms and the relationships between the different bits of information. In this process the “Data” is normally information about something. This something is called an “Object”. In the IT industry this may also be called an “Entity”, a “Class” or a “Class Object”. In databases it may be called a table. For consistency in this document it will always be called an “Object. In order to keep track of objects, an identity (ID) has to be defined for them. The ID needs to be a name or code for each time an object occurs which “uniquely” identifies each instance of an object.

The main “Objects” identified in this chapter are:

- Train
- Path
- Path Request
- Case Reference

8.2.2.1 “Train”

The train object first comes into existence at the earliest planning phase when the RU starts to develop plans to run a train. The Lead RU creates the identification for the train at this stage. The LeadRU will then go through a harmonisation process with all RUs involved in the particular business case. They will then apply for paths to run the trains. The attributes of the object Train are:

- Train route (geography, journey sections / locations, timing, indication of responsible RU and IM)

 The locations to be defined for the train route shall be at least:
 - origin of the train route
 - border points
 - destination of train route

- Train parameters (weight, length)
- Train calendar / start date

Shown here is the minimum requirement from the technical point of view. The technical details of the object Train are given in the XSD structure (see the current TAF/TAP XSD Schema / data catalogue reference XXX) within the element TrainInformation.
8.2.2.2 Path

In response to path request issued by RU, the IM will offer or reject a Path. The IM will need to create an ID for this Path. It may also offer a number of paths each with their own IDs. An IM may or has to create pre-arranged paths. On busy routes it may be easier to plan the paths to make best use of the infrastructure and then allocate them when they are requested. In these cases the IM should create the IDs when the pre-arranged paths are created. Each path in the catalogue should have an ID.

The attributes of the Path object are:
- Geography – Journey(path) sections / locations, timing, indication of the responsible IM
- Path parameters (weight of the Train objects on the path sections, length of the Train objects on the path sections, speed, traction details etc.)
- OTN for each section of path (journey)
- Calendar

Shown here is the minimum requirement from the technical point of view. The technical details of the object Path can be found in the XSD structure (see the current TAF/TAP XSD Schema / data catalogue) within the element PathInformation.

8.2.2.3 Path Request

In order to get a Path for a Train, the path request has to be issued. Therefore, the Path Request is an object in its own right with a separate ID. The technical attributes of the Path Request object are contained in the Path Request Message in the current TAF/TAP XSD Schema / data catalogue (the message header elements which are used for all messages in TAF/TAP are excluded from the model).

8.2.2.4 Case Reference

This object heavily depends on the agreements between the partners that exchange the information with the means of TAF/TAP messages in the industry. The object is here mentioned for the purpose of:
- Umbrella for the business case: The cases where the partners want to provide an identifier as an umbrella for the whole business case which is handled in the process of organizing the Train, sending the Path Requests for it- and constructing, offering and keeping the track on Path for it.
- Transaction scope: this identifier is used in a sequence of actions that have to be started, processed and ended as a whole.
- Differentiation of parallel applications: All the (re-)planning activities to be processed in parallel have to be differentiated by using this identifier.

Therefore, the structure of this object is not further defined in this document, As mentioned before, it rests on the agreements between the partners in the industry.
8.2.2.5 The difference of IDs for objects in planning and operational phase

When a RU creates a train and an IM a path it may be for a single day or a number of days. In the planning phase the object (train and path) will have a calendar as an attribute to indicate which days it operates. However when the object is used in operation each object (train and path) on each day needs a unique ID. For this reason the objects and the format of their IDs come in two forms:

1. The Planning object (with the ID of the planning object without the start-date) and

2. The Daily (operational) object (with the ID of the planned object enlarged and made unique with the start date).

8.2.4 IDs

In order to standardize the structure of IDs for the TAF/TAP the following format has been chosen with a specific field for the object type.

8.2.3.1 Standardized Structure

Basically, the structure is made in a generic manner, and the identifier is constructed as a “composite” of several elements.

1. Planning:
In the figure above, the elements of the composite identifier for the objects in the planning phase are shown. The details about the elements are provided below.

2. Operation:
In the figure above, the composite identifier type which should be used in the operational phase is shown. The elements for building of the composite are described below.

Elements of the composite structure

8.2.3.2 Object type

A two character element indicating the type of object this ID is for. This object is necessary to ensure that the IDs for different objects are unique between them. It also allows a person or system to easily recognise the type of object the ID is for.

The object type is a fixed length of 2 alphanumeric characters: It can use any digit from 0 to 9 and any upper case character from A to Z. It cannot be shortened to 1 character and cannot use any punctuation or spaces.

Enumeration:

- TR for Train
• PA for Path
• PR for Path Request
• CR for Case Reference

An international body must manage the object types to ensure their correct application. In the XSD schema, it looks as follows:

```xml
<xs:element name="ObjectType">
    <xs:annotation>
        <xs:documentation>Provides a possibility for differentiatinon between the objects: Train, Path, Case Reference and Path Request</xs:documentation>
    </xs:annotation>
    <xs:simpleType>
        <xs:restriction base="xs:string">
            <xs:minLength value="2"/>
            <xs:maxLength value="2"/>
            <xs:pattern value="[0-9A-Z]{2}"/>
            <xs:enumeration value="TR"/>
            <xs:enumeration value="PA"/>
            <xs:enumeration value="CR"/>
            <xs:enumeration value="PR"/>
        </xs:restriction>
    </xs:simpleType>
</xs:element>
```

8.2.3.3 Company

A four character element is indicating the company who created the object. By prefixing all IDs with the company ID it allows the company to use its own code and still ensure the ID is unique. The company codes to be used will be the current standard set down by the TAF/TAP. These codes are made up of only numbers at the moment. In the XSD schema, it looks as follows:

```xml
<xs:element name="Company" type="CompanyCode">
    <xs:annotation>
        <xs:documentation>Identifies a railway company (RU or IM)</xs:documentation>
    </xs:annotation>
</xs:element>

Please note that the type CompanyCode corresponds to the RICS (UIC) coding structure and should be mirrored if RICS coding changes:

```xml
<xs:simpleType name="CompanyCode">
 <xs:annotation>
 <xs:documentation>Identifies the RU, IM or other company involved in the Rail Transport Chain</xs:documentation>
 </xs:annotation>
 <xs:restriction base="Numeric4-4">
 <xs:minInclusive value="0001"/>
 <xs:maxInclusive value="9999"/>
 </xs:restriction>
</xs:simpleType>
```
8.2.3.4 Core element

The Core element is the main part of the ID. It is free format and determined by the company that creates it. It can use any digit from 0 to 9 and any upper case character from A to Z. It is fixed width 12 characters. If it is less than 12 characters long it must be left justified by padding out the remaining space with a horizontal dash “-”.

In the XSD it looks as follows:
<xs:element name="Core">
  <xs:annotation>
    <xs:documentation>It is the main part of the unique Train Identifier and is determined by the company that creates it.</xs:documentation>
  </xs:annotation>
  <xs:simpleType>
    <xs:restriction base="xs:string">
      <xs:minLength value="12"/>
      <xs:whiteSpace value="replace"/>
      <xs:maxLength value="12"/>
      <xs:pattern value="[^\-0-9A-Z]{12}"/>
    </xs:restriction>
  </xs:simpleType>
</xs:element>

Rules:

From the technical point of view the content of the core element can be freely constructed by each company involved, by respecting the rule given in the regular expression in the XSD model.

Specific for the Train ID Core Element: For the implementation phase it has to be investigated how the change from the UIC leaflet 419-1&2 procedure to the full working Train ID can be managed. This could include among other for example rules in the core element. During the implementation phase adaptations of the chosen solution must be possible.

8.2.3.5 Variant

The variant field is a fixed length of 2 characters. It can use any digit from 0 to 9 and any upper case character from A to Z. It cannot be shortened to 1 character and cannot use any punctuation or spaces.

This is how does the structure look like in XSD:
Utilization:

See chapter 8.2.3.8 “Uniqueness of the code”.

8.2.3.6 Timetable Year

In order to allow the core element to be reused for different timetable periods the year is included to indicate which year it applies to.
In XSD, it looks as follows:

```xml
<xs:element name="TimetableYear">
 <xs:annotation>
 <xs:documentation>Refers to the timetable period in which the business will be carried out</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2012"/>
 <xs:maxInclusive value="2097"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
```

8.2.3.7 Start-Date:

The start-date is the day of planned departure from the origin station of the object. The field is only present in the daily object.
In XSD it looks as follows:

```xml
<xs:element name="StartDate">
 <xs:annotation>
 <xs:documentation></xs:documentation>
 </xs:annotation>
</xs:element>
```
8.2.3.8 Uniqueness of the code

It is the responsibility of the company that creates the code to ensure its uniqueness. For the lifecycle of an ID only the entity which has created it, is allowed to change it. Because a code is prefixed with the type and company codes a company only needs to ensure the “core element” is unique in each timetable period. If there is any change to the object in the timetable period and there is a need to hold two or more records. This is allowed providing each one uses a different variant. Indeed, during the planning phase several train/path/other objects will be created. They may differ slightly in their information (e.g. a train running Monday to Friday has a different timetable than the same train on Saturday). As one method for using the variant, the indication that two objects with the same Core element differ in the calendar can be utilized. To relate those similar objects easily, the variant can be used. Each object has the same core (~ family) and the other fields for the identifier but they differ in the variant (~ individual).

8.2.5 Relationship to existing identifiers

Operational Train Number (OTN)

All railway operations today identify trains using OTN (except for railways in Great Britain that uses 4 character alphanumeric). This OTN consists of up to eight characters (example: 5 digits in UIC Leaflets 419-1&2) which identifies the train. In addition in most countries it is also used to describe the category of the train. This can include information such as a train’s speed, priority, route, direction, running order, timetable and some special needs (such as exceptional loads or hazardous goods).

- The rules for the uses of the number are complex and each country has different information included in the make up of the train number.
- In all countries the train number is used by the signalling system to route and track the train across the rail network.
• The existing operational train number (OTN) must be retained as a reference to existing systems. It would no longer serve as the actual “identifier” of the train (as this creates the problems to be solved) but would be used as a way of identifying the train as part of the existing operational procedures.

• In addition it was agreed that each IM (in conjunction with its national authorities) should be free to determine the rules for how it is used in accordance with its operational and safety standards.

• The numbering scheme described in UIC leaflet 419-1&2 regarding a decision of the RUs could continue to be used as the basis for the train numbering of international trains.

In the operational environment the operational train number (OTN) can be changed if national rules allow or require it. IMPORTANT: This is subject to the new rule that the IM must update the OTN in the Path object and inform all other affected IMs and RUs involved in the train run. In all these cases they would be required to do so electronically and include in the message the Train ID and the Path ID.

8.2.6 Communication with Identifiers

Both RU and IM must be able to receive and act on both types of identifiers. When exchanging messages and using the identifiers a RU or IM must be able to receive and process the message on occurrence. Consequently, Train ID and Path ID and the corresponding objects they identify must be recorded in systems of both RU and IM as well as the links between the objects. The responsible entity changing an ID shall inform all actors concerned about such a change, which results in an update of links between the corresponding objects. The entity which has received an update of a link notification shall introduce this update in its own systems. Changes of the Path ID and/or OTN without update of the links between the corresponding objects Path and Train can be described as irregular link destruction (i.e. inconsistent state in the databases of the partners/actors), a situation which leads into losing the possibility of tracking the train with all negative consequences.

Note: The details about the framework for updating the links between the objects can be found in the document “Update Link Framework” (#reference to be added) which is attached to the Sector Handbook.

8.2.7 Benefits of the Proposed Solution

8.2.7.1 Benefits to the Industry

The working group had to consider a large number of problems and constrains to be resolved in the identification of train. The benefits of resolving the problem of not being able to identify trains uniquely are widespread and not limited to those described here.

8.2.7.2 Full Life cycle
The first ID is created at the earliest possible time in the creation of a train by an RU and retained throughout its existence. This allows it to be used throughout all the steps of the business process of railway operation.

8.2.7.3 Reduction in the cost of resolving errors

By having clear identifiers it will simplify the process of resolving incorrect data. All companies will have to check the data before it is exchanged with another company. Data can be checked as messages are received. All identifiers will contain their creators ID so may be traced back to who created them. By having the 2 IDs (Train ID and Path ID) and the operational Train number (OTN) it will be possible to cross check one ID against the other so simplifying the checking process.

8.2.7.4 Flexibility by separation of IDs

In the past the ID of trains has had to be used for many different purposes. Each one has constrained its use for the other purpose. By splitting the IDs for Train and Path while retaining the operational train number (OTN) will allow each one to be used for the respective purpose and set for that purpose. E.g. the Train ID may be set by the (lead) RU as a commercial reference that would be understood by its customers. In addition this will help to reduce the cost of implementation, as it will be possible to include the IDs from legacy systems in the core element of the IDs.

8.2.7.5 Customer

An end-customer (applicant) in the future can follow its product throughout the entire lifecycle. It gives more reliability of information for the customer and allows tracking and traceability (ETA/ETI).

8.2.8 Summary

- The solution will give a separate identity to the Train and the Path. Both these IDs will be new and different from the existing train number.
- During the transitional phase until new identifiers are implemented, the operational train number (OTN) is used as train identifier. After implementation the OTN will continue to be used for compatibility with signalling and other systems.
- A standard ID structure is created which might be used for all objects for which data is exchanged between companies in TAF and TAP messages within RU/IM communication (TAP messages are also related to the commercial area that is not influenced at the moment by this IDs structure). Therefore, the information about other objects may be exchanged between IM and RU when they agree to do so. They could use the standardized generic ID structure too.

8.3 How to reach the aim (migration procedure)

In order to reach the aim of using the new identifiers in the industry, the following has to be taken into account.

- The use of messages between the partners depends on implementation status.
• The use of optional messages depends on local needs and rules.
• Use of optional elements depends on local needs and rules.
• The use of identifiers depends on implementation status of each partner

There are some basic rules to be considered:
It is up to every company itself to investigate and be responsible for its own internal migration. Due to different implementation steps of each of the involved partners and due to the different local use of optional messages and elements, each pair of partners needs to agree on the details of RU/IM message exchange prior to sending.
During the migration, the companies that use legacy identifiers have to agree with those that use the new identifiers about the content of the messages. Consequently, the companies that use new identifiers will additionally have to transfer the legacy identifiers to those companies that have still not adopted the new approach.

The proposed migration plan looks roughly as follows:

- **IDs Migration steps**

  ![Diagram of migration strategy](image)

  • Figure 3 Migration strategy

  - Basically, in the first step of the implementation of TAF/TAP, the legacy identifiers such as OTN have to be used. During the implementation, there will be the need for testing the correctness of the new identifiers and methodologies of their use.
  - Therefore, in the second step, the identification will still be made with “old” legacy identifiers such as OTN, but those companies that are implementing new identifiers and are mature to use them additionally in the messages can send the new identifiers, as an additional information regarding the objects.
  - In the third step, the new identifiers will be used as the primary IDs, and the legacy IDs should be sent as an information. There is a mandatory requirement for all partners in the industry: there has to be backwards compatibility guaranteed between the steps two and three, since the various actors will have different speed in the implementing of TAF/TAP especially regarding the new identifiers. Therefore, the partners that are already using the
new identifiers for the primary identification, have to be able to decode and exchange the messages by using “old” legacy identifiers with those partners that are still not mature with the new identifiers.

- In the fourth step, the new identifiers will be exchanged between all the partners as primary identifiers. As the end stage of the implementation, as the approval of the benefit of implementing the new identifiers concept, it should be possible that the links (relations) between the objects Train and Path can easily be changed (shifting of one Train its Path to another Path, swapping of 2 Trains and 2 Paths etc.) by every actor.

- This is a subject of change, according to the situation in the industry.
9. Reference Data

9.1 Reference File Sector Handbook

This chapter describes the Sector Handbook for TAF and TAP TSI Reference Files for Countries, Companies and Locations and Subsidiary Locations.

The Reference files comprise:
- Countries
- Companies
- Locations
  - Primary
  - Subsidiary

The legal requirements for the reference files are derived from TAF 4.2.1.2 and TAP 4.2.19.1.

For the operation of passenger trains on the European network, the following reference files must be available and accessible to all service providers (infrastructure managers, railway undertakings, authorised third parties and station managers). The data must represent the actual status at all times.

For the operation of freight trains on the European network the following reference files must be available and accessible to all service providers (IMs, RUs, logistic providers and fleet managers). The data must represent the actual status at all times.

- reference file of the coding for all infrastructure managers, railway undertakings, station managers, service provider companies,
- reference file of the coding of locations,
- […]

Other reference files, e.g. for Retail, and the use of location reference data for TAP Retail are not in scope of this document.

9.2 Document Objectives

This Implementation Guideline describes how to deal with various reference files that are shared between TAP and TAP TSI and could be used for legacy systems and additional purposes (e.g. RINF…)

- Definition of the reference files and content
- Initial load of the reference file data base (National location allocation entity
- The options for processes to maintain the reference files
- Regular maintenance of the reference files (responsible entities, companies)
- Update local copy of the Reference files on the local Common Interface
In particular, the Sector Handbook for TAF and TAP TSI Reference Files is an essential document to ensure that usage of Location descriptions within the TAF and TAP TSI framework is well defined and processes for regular operation are available to populate and maintain the data. Governance arrangements for the regular operation are proposed.

This document describes the Sector Handbook and the governance arrangements for the development and implementation. Finally, the document includes some technical appendices which describe the data being held.

The Sector Handbook contains all the necessary content to meet these objectives.

It is in the scope of the document to describe:
- the content of the Reference files,
- possible actors,
- possible Maintenance scenarios of Reference files,
- the access policy for use of the Reference files within the TAF and TAP framework.

It is out of scope of the document to describe:
- a detailed time table for Implementation,
- national processes,
- company Hardware- or Software solutions.

Normalised codes are needed to support data exchange as defined in the Technical Specification for Interoperability (TSI) relating to the subsystem Telematic Applications for Freight of the Trans-European Conventional Rail System and Telematic Applications for Passenger referred to in Council Directive 2008/57/EC. To ensure data quality, the TSI for Telematic Applications for Freight and for Passenger (TAF and TAP) defines the need for centrally stored and administered reference files to be a repository for these codes. These codes and reference files ensure consistency of data interpretation across various application systems.

### 9.3 Location reference file

The figure below shows the process to maintain Location reference files (process is identical for primary and subsidiary codes, but actors and actors rights can differ)
The TAF and TAP TSI Location Reference Data base is also known as the Central Reference File Database (CRD).

The figure below show the different possibilities to maintain the location reference files.

To get access to the reference files there will be different possibilities:

- For people, the reference files will be accessible via a web browser to view them, edit and upload them, if necessary rights defined for the user.
For applications, there will be a web service provided by the Central Repository Domain (CRD).

For use within an IM or RU with local Common Interface, there will be a scheduled replication service from the CRD to a local Common Interface. The scheduler could be configured on the local Common Interface.

Use of a web service provided by a local Common Interface accessible for a company application.

- Reference file download via authenticated WS
  - Filter parameters
- Search Export via HMI
  - Filter parameters (e.g. last modified date, country, subsidiary type code)

- Replication Reference files via Web Service (WS) to Local Instance
  - Filter parameters (e.g. last modified date, country, subsidiary type code)
  - Scheduler defined by Local Instance of CI

- Search and export via Browser on Local Instance
- Reference file download via WS to Legacy System
  - Filter parameters (e.g. last modified date, country, subsidiary type code)
  - Scheduler to be defined by Legacy System

9.4 Regular Maintenance

Within each EU country a "National Location File Entity" (which can be an Infrastructure Manager) will be responsible for ensuring that the TSI Location Reference files are maintained.

The Process to update the location reference files is provided as figure in Chapter 9.3.

Company Codes will be allocated and administered by a central administration service (CAS) in cooperation with OSJD. Currently the registration Entity is UIC (RICS) which is already maintaining the 4 digit RICS code. The RICS code will be transferred to the TAP.
and TAF TSI reference files for Companies. Each participant of TAP and TAF TSI message communication and Locations files maintenance needs to have a company code. Company Codes can be requested at the time on UIC WEB Page: http://www.uic.org/spip.php?article311.

Country codes are maintained by the International Organization for Standardisation (ISO). Should a new country code be required or amended the requester should follow the process as laid out by ISO and documented on their website. www.iso.org/iso/country_codes.htm

9.4.1 Roles in Regular Operation

TAF and TAP TSI have defined an agreed set of actors. This section lists which actor type is particularly responsible for which type of activities:

<table>
<thead>
<tr>
<th>Actor Type</th>
<th>Responsibility of activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator of the CRD</td>
<td>Maintains the centralized Reference file system Establishes and maintains new users and the technical interface for the maintenance of reference files based on the agreed governance</td>
</tr>
<tr>
<td>International Reference File Entity</td>
<td>Maintains common European location definitions (e.g. types of subsidiary locations, Border – Definitions) independent of a country or company. Defines, which Subsidiary Location Type can be attributed (maintained) directly by actors if National Location File Entity allows this for its country.</td>
</tr>
<tr>
<td>National Location File Entity</td>
<td>Is responsible for maintaining the uniqueness of locations codings within a country. The National Location File Entity has to be agreed at a national level. It is specified in the Company Code List, who is the National Location File Entity. (In many countries the largest IM has taken on this role.) The National Location File entity decides if Subsidiary Location Types can be maintained directly (CRUD) by Allocation Companies (RUs, SMs).</td>
</tr>
<tr>
<td>Infrastructure Managers</td>
<td>Are accountable for ensuring that their locations are correctly coded in the CRD. (This may mean that an IM takes direct responsibility for the maintenance of locations within their network if a National Location File Entity is not defined or if a country has one IM only.)</td>
</tr>
<tr>
<td>Railway Undertakings</td>
<td>Are accountable for ensuring that their subsidiary locations are correctly coded in the CRD. They may, if allowed by national governance, take direct responsibility for the maintenance of subsidiary locations for defined subsidiary type codes.</td>
</tr>
</tbody>
</table>
Station Managers  Are accountable for ensuring that their subsidiary locations are correctly coded in the CRD. They may, if allowed by national governance, take direct responsibility for the maintenance of subsidiary locations for defined subsidiary type codes.

Allocation Company  A actor defined on national level authorized to attribute Subsidiary Location Codes for specified subsidiary type codes. The National Location File Entity will define the rights of an Allocation Company

Others (i.e. other actors under the TAF or TAP TSI definition)  May request the creation of primary locations by National Entity or responsible IM

Guests (i.e. not TAF or TAP TSI actors)  May be permitted read-only access to reference files. This category of actor includes all service providers IMs, RUs, SMs, logistic providers and fleet managers

9.5 Project Actors for Reference Data

The actors will be classified as one of:

- Administrators
- International Reference File Entity
- National Reference File Entity
- Infrastructure Managers
- Railway Undertakings
- Station Managers
- Others
- Guests

Following the governance individual named actors could be assigned for special tasks and executive power to take decisions, e.g. EU Commission, ERA, TAF and TAP Steering Boards, Provider of common elements [is procured by the Governance Entity].
9.6 Quality Criteria indicators

This section explains the Quality criteria for the Reference Files, in particular

- the delivery of Reference Files by responsible actors according to deadlines and their successful validation.

The completeness and uniqueness of primary locations are validated by IM in consideration of all locations which could be used in Messages between IM and RU. Missing locations will be added by the responsible National Location File Entity.

A company using a primary code in messages has to make sure that this code is available in the Reference File or that the partner receiving the code has knowledge about its meaning.

The National Location File Entity is responsible to ensure that a location is unambiguously coded (avoid doubling/ different primary codes for the same physical location).

The completeness of Subsidiary Location is to be secured by the IM responsible for mandatory Subsidiary Location types (as defined commonly).

Additional Subsidiary Location will be regulated by the railway sector based on the business needs. Therefore the completeness will be secured by the railway sector itself. An actor using a subsidiary location code has to make sure that this subsidiary location code is available in the reference file or that the partner receiving the code has knowledge about its meaning.

Uniqueness of Subsidiary Location coding code will be secured by the respective National Location File Entities or the Allocation Company if available.

In case an Allocation Company ceases to exists, rules have to be in place for how long the Subsidiary Code remains in the Reference Files or is handed over to a following company [manual process]. A company code cannot be deleted until all Subsidiary Codes using this code are deleted or handed over.

9.7 Data to be held

9.7.1 Company Description

The present document describes a coding structure to identify unambiguously and uniquely:

- Railway companies as defined in the Technical Specification for Interoperability - Telematics Applications Freight Services (TAF-TSI) and TAP derived from the Directives 2012/34/EC and 2008/57/EC;
- Other transport bodies;
- Any other company involved in the rail transport chain.
The defined coding structure of CompanyIdent meets the requirements and vision of the TAF and TAP-TSI\textsuperscript{10}. It can be used in various applications and for different purposes (documents, messages, marking, etc.). The coding structure has sufficient flexibility to satisfy the expected demand for codes requested in the forthcoming decades in the current EU single market, its possible expansion and operation with non-EU member States.

The definition of Company comprehends the following as defined in the TAF and TAP-TSI.

- IMPartner;
- NextResponsibleIM;
- NextResponsibleRU;
- Recipient;
- ResponsibleIM;
- ResponsibleRU;
- PreviousResponsibleRU;
- RUPartner;
- StationManager
- Sender.
- Receiver

Further on only CompanyIdent is used\textsuperscript{11}.

<table>
<thead>
<tr>
<th>Company Code</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 - 9999</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Code Example</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

More details are to be found in Annex 9.1 of this Implementation Guide.

The code is unique within Europe

Currently the code uses numerics only, but for future use the code should be implemented in company applications as alpha-numeric to be flexible enough if more than 9999 is needed.

9.7.2 Country description
This element indicates the type of a field containing the coded identification for a State/Country as defined by ISO 3166 – 2 position alpha code (2A).

\textsuperscript{10} ERA Technical Documents for TAF TSI - ANNEX D.2 : APPENDIX C - REFERENCE FILES and TAP-TSI

\textsuperscript{11} TAF described a PartnerIdent which is similar to CompanyIdent and consequently is no longer used independent.
More details is to be found in Annex 9.1 of this Implementation Guide.

### 9.7.3 Location Description

Location is a place, a geographic point, inside or outside the rail network, which is needed to be identified for operational, technical, administrative or statistical purposes. This can be either a Railway or a Customer location.

Locations can be Stations, Yards, Halts, Terminal or Transhipment Points, Loading Points, Marker Points, Warehouses, Maintenance Workshops, Traction Departments, Town Offices, Railway frontier-points, transit-points, hand-over points and interchange points, Customer Sidings, Travel Agencies, Sales Points, Tracks and so on. It can also represent a part or section of them.

#### Coding of a Primary Location

This element identifies a location by its code. A location denotes a place used for technical, commercial, operating or administrative purposes and which belongs to or is connected with a transport enterprise. This location must be a network rail point managed by an Infrastructure Manager (IM).

<table>
<thead>
<tr>
<th>Code Example</th>
<th>A1</th>
<th>A2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Description</td>
<td>Country Code</td>
<td>LocationPrimaryCode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More details is to be found in Annex 9.1

- The first two characters (2Alpha) contain the ISO 3166 Country Code defining the country where the location is (e.g. DE = Germany);
- The next five characters (5N) contain a non-significant LocationPrimaryCode to identify the location;
- The LocationPrimaryCode has to be unique per country and each physical location shall have only one LocationPrimaryCode
- Stations and part of stations will be having their own primary location code.

Country Code and LocationPrimaryCode are used in messages to identify a (primary) location. Within the Central Reference File, the key consists of the Validity Start Date as well.

#### Coding of a Subsidiary Location

This element identifies a subsidiary location as a part of a primary location e.g. a junction, a signal, a marker point, track, border point, sales office etc. This may be a non-rail point or a rail point that is not managed by an Infrastructure Manager (IM).
More details is to be found in Annex 9.1

The Subsidiary Location is optional and dependant upon business needs. It is always associated with a Primary Location and is always comprised of a LocationSubsidiaryTypeCode, LocationSubsidiaryCode and AllocationCompany. All these elements make the Subsidiary Code unique. Country Code, LocationPrimaryCode, SubsidiaryTypeCode, LocationSubsidiaryCode and AllocationCompany are used in messages to identify a subsidiary location. Within the Central Reference File, the key consists of the Validity Start Date as well.

- The two characters (2AN) comprise a pre-defined code, LocationSubsidiaryTypeCode. Code '00' is undefined.
- The predefined codes are maintained by an European Entity [which has to be defined]. More details can be found in Annex 9.4.
- The next one to ten characters (1AN - 10AN) comprise a non-significant LocationSubsidiaryCode to identify a “dependent” location defined together with the LocationPrimaryCode.
- The Allocation Company in the Subsidiary Location is a part of the primary key of the location subsidiary code.
- The validity of the Subsidiary Location is bound to the life span of the Primary Location. There can be no Subsidiary Location without a valid Primary Location.

**Subsidiary type codes**

Locations are defined by a primary location code and optionally by an subsidiary location.

Primary locations are used for Stations and part of stations. Within the messages between IM and RU in most cases only primary codes are used. Primary locations are used always for the level of stations of part of Stations. They will be maintained usually by the Infrastructure Manager or a national location file entity.

Subsidiary locations are mainly used between the Railway Undertakings where detailed information within a primary location is needed. For specific reasons as specified in certain messages for the communication between IM and RU the primary location needs to be further detailed, e.g. to indicate a specific track in the station. Therefore, subsidiary locations can also be used in messages between RU and IM.

A subsidiary location depends always on a primary location. Subsidiary locations are grouped by subsidiary types. The types are part of the key. Each Subsidiary location is allocated by an Allocation Company. Bases on national rules Freight and Passenger
Companies are allowed or not to maintain subsidiary locations for certain subsidiary types directly in the central Reference file system.

An initial coding is based on the CEN workshop and TAF / TAP Expert-Groups to support the messages within the TAF and TAP TSI framework.

The code for Subsidiary locations for some Subsidiary type code should be maintained mandatory by Infrastructure Manager, e.g. Relations between Stations (99) or by UIC, e.g. Boarder Points (03).

The coding was established under the premise to support the coding of subsidiary Locations
- in TAF and TAP TSI messages
- in the related business (applications)
- other useful locations e.g. for network statement

The coding is available in the CRD.

After the initial proposal further or adapted Coding will be established by related Coding Group and may be maintained as separated code shemas.

**Description of the whole location data set (xml)**
The data set is described in Annex 9.1 and the description of the update message in xml is described in the message data catalogue (Annex 1)

**9.7.4 Initially population**

Use case
1. Initial loading of locations by **Central CRD Admin**
   a. select and import from European Railway Locations Database (ENEE)
   b. by an delivered CSV (structure for CSV to be proposed by contractor)
   Bulk upload is delivered to the National Location File Entity. The National Location File Entity hands the bulk file to the Central CRD Administrator.

2. **9.7.5 Maintenance Use case**
   (CRUD: Create, Read, Update, Delete)

3. CRUD by **Central Entity Companies and Countries** independent of CountryCodeISO and Company code
   a. Companies
   b. Countries

4. CRUD by **Central Entity Locations** for all locations (independent of CountryCodeISO and Company code)
   a. LocationPrimaryCode
   b. LocationSubsidiaryCode
c. LocationSubsidiaryTypeCode

5. CRUD by **Central Entity LocationSubsidiaryCode for defined LocationSubsidiaryTypeCode**
   Constrains:
   Maintenance of LocationSubsidiaryCode for defined LocationSubsidiaryType Code
   (no restriction of Country, Company)

6. CRUD by **National Location File Entity (NE) for all locations**
   Constrains: Location ISO Code of LocationPrimaryCode has to be same as User (Company) of the NE
   a. LocationPrimaryCode
   b. LocationSubsidiaryCode

7. CRUD by **IM for all locations**
   Constrains:
   Element “ResponsibleIM” (Company Code) in LocationFileDataset has to be same as User (company) of IM
   Element “AllocationCompany” in LocationSubsidiaryCode has to be same as User (company) of IM

8. CRUD by Registered RU, SM (User) for LocationSubsidiaryCode
   Constrains:
   only if allowed for this country (to be defined by configuration in country file);
   only for LocationSubsidiaryCode at which the subsidiary type code is flagged “maintenance allowed by RU”

9. CRUD by Registered others (User) for LocationSubsidiaryCode
   Constrains:
   only if allowed for this country (to be defined by configuration in country file);
   only for LocationSubsidiaryCode at which the subsidiary type code is flagged “maintenance allowed by others”

10. CRUD by Registered Central Entity “LocationSubsidiaryCode (User) for LocationSubsidiaryCode
    Constrains:
    only for LocationSubsidiaryCode at which the subsidiary type code is flagged
10. Code Lists

This chapter provides an overview of codes used in the RU/IM message exchange. The code lists can be found in Annex 10. The annex also notes the category of codes (A, B, C, D) relevant for maintaining the codes. See chapter 23.1 for the maintenance of the different classes of codes.

10.1 codes
Specific values that are needed in some of the elements used in messages:

- **PathDossierError**\(^{12}\)
  A list of errors of the elements of the Path Request Message, applicable for all elements, Passenger specific, Freight specific and Common elements

  Note: In addition to the error codes for the main TAF/TAP elements in the messages, the code list can be extended to include error codes for custom elements (defined in National Specific Parameters) that will be used by RU/IMs within their specific network. These will have to be user definable codes created by the IM

- **Tilting Function**\(^{13}\)
  A list of options available for a Passenger train with tilting capability

- **Traction Mod**
  A list of two digit codes identifying the type of traction unit and its position in the group of units, applicable for both Passenger and Freight traffic

- **Train Activity Type**
  A list of common activities that can take place at a location. This covers RU and IM activities that take place for Passenger and Freight traffic e.g. Change of Engine required by an RU, Operational Stop required by an IM

- **Train CC System**
  A list of train control systems that are available in Europe

- **Train Radio System**
  A list of train radio Systems used for voice and messaging communications

- **Train Type**
  A generic list of train types covering passenger, freight, engineering and any other trains

- **Traffic Type**
  A list of the types of traffic that can be operated by an RU for passenger services

\(^{12}\) Waiting approval by Change Control Management

\(^{13}\) Waiting approval by Change Control Management
• Type of RU Harmonisation / Type of IM Harmonisation
  A list of codes that define that status of harmonisation for RUs and IMs
  Note: Although the code values are the same, these have to be treated as
  separate Code Lists since the processes are considered separate

• Type of Request
  A list of the types of request that can be made by an RU

• Type of Information
  A list of the types of responses that can be given by RU or IM depending on the
  step in the process e.g. offer by an IM (Path Request process), activate path by an
  RU (Utilisation Notification process)

• Type of Location
  A list of the type of location that can be included in the Messages, both by an RU
  or IM e.g. Border Point, Origin

• Interruption Reason (Code list for Train Interruption) ; Delay Cause ; Delay Code
  A list of codes that denote the reason why a path is no longer available by an IM
  e.g. Flooding
  Note: This list is the same as the Code List given by the IM during an interruption
  of a train during its operation. It is therefore a code that is reused during the
  interruption caused in planning

• Train Location Status
  A list of status a train can have at a given station during operations, e.g. departure,
  passing through etc.

There are also a number of other reference codes that belong to other areas and
functions across the wider rail process but are also linked directly to the planning process.
These are predominantly commercial codes used in the retail sector but also in RU/IM
communication

• Commercial Traffic Type
  A list of Commercial Brand Name of the train service used by passenger RUs
  within Europe that are primarily used for retail purposes e.g. Eurostar. This is
  according to TAP Passenger Code List.

• Special service description code
  A list of services on a train identified by a passenger RU that is primarily used for
  retail purposes e.g. Dinner service. This is according to TAP Passenger Code List.

• Facility type description code
  A list of facilities on a train identified by a passenger RU that is primarily used for
  retail purposes e.g. Bicycle transport is available. This is according to TAP
  Passenger Code List.
• Characteristic description code
  A list of characteristics on a train identified by a passenger RU that is primarily used for retail purposes e.g. First Class coaches. This is according to TAP Passenger Code List.

Some codes are used by stations managers for passengers information, under agreement of concerned RUs. These codes are usually derived of the above retail codes.

• Internal vehicle facility (facilities offered by the internal fitting of a vehicle).
• Commercial Service code (service offered in a train).
• Information to be displayed (summarized information to be displayed for passengers information in the stations).

Some codes concern transport restrictions (freight and passengers traffic) and internal fitting defects (passengers traffic). If relevant, specific national or mutually agreed codes can be used.

There are also a number of other reference codes belong to other areas and functions across the wider rail process but are also used in planning

• Combined Traffic Load Profile\(^{14}\)
• Exceptional Gauging Code
• Brake Type
• Route Class

10.2 Index of Code lists,
The following table gives an overview of the code lists with code category (according to chapter 23.1) and source. Details can be found in Annex 10.

<table>
<thead>
<tr>
<th>For RU/IM Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Element</strong></td>
</tr>
<tr>
<td>Brake Type</td>
</tr>
<tr>
<td>Characteristic description code</td>
</tr>
<tr>
<td>Combined Traffic Load Profile</td>
</tr>
<tr>
<td>Commercial Traffic Type</td>
</tr>
<tr>
<td>Company Id</td>
</tr>
<tr>
<td>Coordinating IM</td>
</tr>
<tr>
<td>Delay Reason</td>
</tr>
</tbody>
</table>

\(^{14}\) Waiting approval by Change Control Management
<table>
<thead>
<tr>
<th>Exceptional Gauging Code</th>
<th>C</th>
<th>UIC 404-2; 920-13; 505, 506</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility type description code</td>
<td>C</td>
<td>TAP Code List B.4 9039</td>
</tr>
<tr>
<td>IM Code</td>
<td>C</td>
<td>CompanyCode</td>
</tr>
<tr>
<td>Leading RU</td>
<td>C</td>
<td>CompanyCode</td>
</tr>
<tr>
<td>Location Primary Code</td>
<td>C</td>
<td>LocationPrimaryCode</td>
</tr>
<tr>
<td>Location Subsidiary Type Code</td>
<td>B</td>
<td>LocationSubsidiaryTypeCode</td>
</tr>
<tr>
<td>Message Status</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Modification Status Indicator</td>
<td>A</td>
<td>ModificationStatusIndicator</td>
</tr>
<tr>
<td>PathDossierError</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Responsible Applicant</td>
<td>C</td>
<td>CompanyCode</td>
</tr>
<tr>
<td>Responsible IM</td>
<td>C</td>
<td>CompanyCode</td>
</tr>
<tr>
<td>Responsible RU</td>
<td>C</td>
<td>CompanyCode</td>
</tr>
<tr>
<td>Internal Vehicle Facility</td>
<td>D</td>
<td>InternalVehicleFacility</td>
</tr>
<tr>
<td>Commercial Service Code</td>
<td>D</td>
<td>CommercialServiceCode</td>
</tr>
<tr>
<td>Information to be Displayed</td>
<td>D</td>
<td>InformationToBeDisplayed</td>
</tr>
<tr>
<td>Transport Restriction</td>
<td>C</td>
<td>PassengerTransportRestriction</td>
</tr>
<tr>
<td>Internal Defect</td>
<td>D</td>
<td>InternalFittingDefect</td>
</tr>
<tr>
<td>National/agreed restriction/defect</td>
<td>D</td>
<td>OtherPassengerRestrictionOrdefect</td>
</tr>
<tr>
<td>Route Class</td>
<td>C</td>
<td>CEN EN 15528</td>
</tr>
<tr>
<td>Special service description code</td>
<td>C</td>
<td>TAP Code List B.4 7161</td>
</tr>
<tr>
<td>Tilting Function</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Traction Mode</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Traffic Type</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Train Activity Type</td>
<td>A</td>
<td>TrainActivityType</td>
</tr>
<tr>
<td>Train CC System</td>
<td>A</td>
<td>TrainCCSyst</td>
</tr>
<tr>
<td>Train Journey</td>
<td>A</td>
<td>TrainJourneyModificationIndicator</td>
</tr>
<tr>
<td>Modification Indicator</td>
<td>Train Location Status</td>
<td>Train Location Status Code</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>TrainLocationStatus</td>
</tr>
<tr>
<td>Train Radio System</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Train Type</td>
<td>A</td>
<td>TrainTypeCode</td>
</tr>
<tr>
<td>Type of IM Harmonization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. Message Header for RU/IM communication

This chapter describes the message header that is common to all TAF and TAP RU/IM Messages.
11.1 Explanation of Message Header Elements

The Sender, Recipient and Message type fields are used to route the message to the right recipient based on configuration on the sending CI.

This Header also MUST be used for shared metadata messages exchanged between two partners. (Shared Metadata describes messages which could be exchanged between two or more partners.) The format can be locally defined and shared between partners. This also allows using the Common Interface for enhanced xml-message exchange outside of the TAF and TAP defined metadata.

<table>
<thead>
<tr>
<th>Element</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Type</td>
<td>4n</td>
<td>The message type defines the functional message by a number. The message types are defined in a table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As an example, value ‘2002’ is a 407-1 2002 Running advice.</td>
</tr>
<tr>
<td>Message Type Version</td>
<td>string..25</td>
<td>The message type version defines the version of the message. It will be the version of the schema. It is proposed to use for each Message a single schema.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This will identify the version of the schema. For common metadata, this will be version of the metadata used, i.e. ‘5.3’ for the current version the metadata.</td>
</tr>
<tr>
<td>Message Identifier</td>
<td>String..255</td>
<td>The message Identifier is assigned by the CI to secure the transactions are uniquely identified between the CIs for reliable messaging. It has to be unique.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Message ID is a sting of 36 bytes. For technical point of view the MessageIdentifier is a universally unique identifier (UUID) created using java.util.UUID class. It is 128 bit value. We are using randomUUID() function of UUID class which generates UUID using a cryptographically strong pseudo random number generator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As string it is represented as a 36 bytes (128 = 16 bytes, each byte is represented by a two byte hex code. That makes it 32 bytes and there are 4 – separators)</td>
</tr>
<tr>
<td>Element</td>
<td>Format</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Message Datetime</td>
<td>datetime</td>
<td>The date and time will be given by the CI to report the last time when the message was sent by the sender. It will contain the local time of the message sender. The convention is on local time with UTC offset.</td>
</tr>
<tr>
<td>Message Routing ID (optional)</td>
<td>2n</td>
<td>Normally the routing (configuration) on the Common Interface (CI) for incoming messages to the right legacy Application will be done based on the message type. There could be a need to have an additional routing code to identify a particular application on the receiver’s end. (i.e. routing to a combined transport or wagonload system.) In this case the Routing ID (defined by the receiver and agreed by the sender) allows definition and configuration on the receiving CI. Routing ID is mutually agreed by trading partners.</td>
</tr>
<tr>
<td>Sender Reference</td>
<td>string 25</td>
<td>This optional element allows the sending application to transfer a reference ID taken from the legacy message (e.g. ftp file number if unique) to the receiving CI and possibly to the receiving application (if supported). It could be used to link a legacy message with a TAP / TAF TSI Message over the translation Layer of the Common interface.</td>
</tr>
<tr>
<td>Sender</td>
<td>Company code string 4</td>
<td>The Sender defines the sender of a Message by its company ID. It will be configurable through message processing on the sending CI if not contained in the legacy message.</td>
</tr>
<tr>
<td>CI_InstanceNumber (Attribute of Sender)</td>
<td>2n</td>
<td>In case that a company has more than one CI (which is possible) the instance number is present as an attribute to identify the correct instance within a company. It will be configurable on the sending CI as a constant and should contain a default of “01”</td>
</tr>
<tr>
<td>Recipient</td>
<td>Company code string 4</td>
<td>The Recipient is the receiving Company defined by the Company ID. It could be defined by the sending application or done by the CI by configuration. Origin information must come from the sending application (either contained within the message or by message processing configuration)</td>
</tr>
</tbody>
</table>
Sender Recipient and Message type are used to route the message to the right recipient based on configuration on the sending CI.

11.2 Example XML message after processing by the Common Interface

```xml
<MessageHeader>
 <MessageReference>
 <MessageType>2002</MessageType>
 <MessageTypeVersion>5.1.8</MessageTypeVersion>
 <MessageIdentifier>1c05811f-0dfc-4554-b9e2-1d053353b2bd</MessageIdentifier>
 <MessageDateTime>2011-10-04T19:34:39.062+1:00</MessageDateTime>
 </MessageReference>
 <SenderReference>2102.txt</SenderReference>
 <Sender CI_InstanceNumber="01">0080</Sender>
 <Recipient CI_InstanceNumber="01">0016</Recipient>
</MessageHeader>
```

11.3 Further explanation on Message Identifiers

The message ID is created by the CI immediately as the messages arrives on the CI not knowing any message structure at this time. This is necessary to log the legacy message at earliest stage. At CI it is used in all logs and also included in the messages in the Header element.

Even if it is provided from Legacy system it will be replaced from CI within the messages processing, even if there is no translation.

Example of logging of message ID:

```
11.4 Payload of the Messages

The following chapters 12 to 18 and 20 will describe the detailed message payloads for

- Short Term Path Request
- Operation of Trains
- Train Preparation
- Train Running Information and Forecast
- Service Disruption/Train Running Interrupted
- Change of Track/Platform
- Train Journey Modified
- Delay Cause
- Train Location.
Part B - Planning of Trains
12. Short Term Path Request

For The ERA Application Guidelines

Introduction
This chapter aims to provide with the necessary planning specific information that is required for the implementation of the messages by the various actors impacted as a result of complying with the TAF/TAP regulations.

The TAF and TAP TSIs are focussed on the planning process for short term planning as the annual train services have short term amendments made to them e.g. cancellation of the service for the day, change of route for a week.
In addition to the diversity of processes there is also a need to identify a train service during the different phases of planning and into operation. The use of the TAF/TAP processes for Long-Term Planning is a recommendation outside and in addition to both TSIs. It is therefore up to the involved parties to agree on using it.

Assumptions:
- The term “Short Term Path Request” process denotes a number of different processes that range from Path Request, Path Cancellation, Path Modification/Alteration, Path Not Available and Path Utilisation.
- The Network Statement defines on each network when the Short Term Path Request period is applicable before the running of a train.
- The application of Short Term Path Request is mandatory according to TAP and TAF. The application of the same messages for Annual Timetable/Long Term Planning is optional.
- It is assumed that all activities described within the processes that are carried out by each IM are done so in accordance with their Network Statement.

The purpose of implementing TAF/TAP TSIs is to ensure an efficient and concrete exchange of information between IMs, Allocation Bodies, RUs and other service providers. The exchange of information is done in relation to the processes during the planning stage.
This information exchange is essentially bi-lateral and takes place between the IM in charge of the Path Section and the RU that will operate over the Path Section. In the case of an Open Access Operator the RU will be dealing with several Infrastructure Managers.
The framework for the allocation processes are laid down in Directive 2012/34 EU and described in detail in National Network Statements of the Infrastructure Managers.

A list of the main content is shown in the following table. The content of these can be accessed in the Annex XX.
12.1 Introduction

This complete chapter aims to provide the necessary planning specific information that is required for the implementation of the messages by the various actors impacted as a result of complying with the TAF/TAP regulations. Other information that is related to planning, e.g. Train Identification, Architecture, can be found in dedicated chapters of this overall guideline document.

12.1.1 Long-Term Planning linked with Short-Term Planning

The TAF and TAP TSIs were initially focussed on just the planning process for short term planning. As happens across virtually all networks in Europe annual train services have short term amendments made to them e.g. cancellation of the service for the day, change of route for a week. It therefore makes sense to use the same standards for annual planning and short term planning.

In addition to the diversity of processes there is also a fundamental need to identify a train service during the different phases of planning and into operation. A European Train Identifier whose main benefit is to have the same number across the various stages – that includes moving from long term planning into short term planning is used in the messages. Extending the TAF/TAP processes to include long term activities as well as short term the problem of train identification for planning can be overcome.
The use of the TAF/TAP processes for Long-Term Planning is a recommendation outside/in addition to both TSIs. It is therefore up to the involved parties to agree on using it.

12.1.2 The need for Harmonisation

At present, there is no mandate as such for the regulations to include harmonisation\(^{15}\) activities between:

- RUs when setting up a path request
- IMs when planning the path details

However, the handover point from one IM to the next IM, where the legal responsibility is changing, is often on a line section where the trains do not stop. This means, the RU interchange point is either in one of the journey locations before or after the handover point. In this case, RUs could have the need to collaborate on these sections (e.g. who is requesting till where, which rolling stock is used). On the IM side, the times at the handover point are often just run through times. In any case, the times at handover provided by both of the IMs shall be the same. Therefore, some collaboration between the two involved IMs is required.

In order to have a fully joined up ‘Short-Term Path Request’ process it could be considered that the harmonisation phases between the respective parties (RU to RU, IM to IM) are included as relevant activities. These activities take place currently in planning and they are incorporated into the overall process. However harmonisation is not included in the regulations. Therefore it has been made optional with a strong recommendation that RUs/IMs adopt them within their working practices.

12.1.3 Support Mechanism for Harmonization

A support mechanism that has the capability to support and maintain the Short Term Path Request process as well as the information (messages) that the process produces helps in tracking and coordinating the different steps of a path request. Having such support not only helps to provide evidence of the message transactions that take place between the actors but also to provide benefits such as auditability, traceability and data recovery (in the case where information can be lost by sending/receiving systems). Having the planning information stored commonly will also help with management reporting and the ability to measure how the process is being utilised by the different parties.

This common support mechanism is likely to be in the form an IT system or tool, that is common to the usage of TAF/TAP and that will work in conjunction with the Actor systems. The tool will have to be fully compliant and could be adopted especially for the traffic involving more than one network or being interoperable in any other kind. Interactions to this tool within the specific processes that make up Short Term Path Request process (e.g. Path Request, Path Alteration) is represented by the swim lanes “coordination” and “order tracking” within the process diagrams themselves, see Annex 12.1.

\(^{15}\) However, Directive 2012/34 Article 40 requires IMs to cooperate which each other for the allocation of infrastructure capacity which refers to a harmonization process
The technical analysis of such a tool has to be carried out by interested parties. This will involve working with different actors (RUs, IMs) in order to define the best way to interact.

The harmonization process also works when using a bi-lateral data exchange between two communicating parties\(^{16}\) without a need of adopting the common support mechanism. The communication will use the same TAP and TAF standards.

12.2 Assumptions

- The term “Short Term Path Request” process denotes a number of different processes that range from Path Request, Path Cancellation, Path Modification/Alteration, Path Not Available and Path Utilisation Notification.
- The Network Statement defines on each network when the Short Term Path Request period is applicable before the running of a train.
- As described Short Term Path Request processes, for Short Term Planning, have been further extended to include Long Term Planning processes for the Annual Timetable (working timetable). Where there is information in the Planning section that is applicable to both processes, only Short Term Planning will be mentioned even though it could apply to Long Term Planning as well. Where there is information that is only applicable to one process and not the other, it will be specifically mentioned which process it is applicable to.
- The application of Short Term Path Request is mandatory according to TAP and TAF. The application of the same messages for Annual Timetable/Long Term Planning is optional.
- It is assumed that all activities described within the processes that are carried out by each IM are done so in accordance with their Network Statement.
- Even if based on the fulfilment of TAF/TAP regulation, there might be the possibility that ‘Short-Term Path Request’ processes will not be applied and companies will be able to follow their national practices and regulations. This will be in the case of exceptional transport such as the planning of nuclear or military trains. This will have to be decided by the authorities that determine the national practices and regulations.
- Activities of third parties (e.g. for shunting), acting on behalf of an RU or IM, have to be dealt by the responsible RU or IM who mandate the third party to handle the task(s). There will be no requirement for these third parties to be TAF/TAP compliant, this responsibility lies within the mandating company.
- Where there is a change of an RU in the operation, the responsible RU may use the resources (rolling stock/staff) of another company (e.g. RU). Responsibility and path ownership stay at the RU with the path contract. This has no impact to the regulation.
- TAF regulation applies to interoperable traffic across different networks whereas TAP regulation applies to both interoperable traffic and domestic traffic e.g. where there is just one RU and one IM involved in the path request.
- In relation to this document the term IM refers to an IM or an Allocation Body (AB) that carries out the same function as an IM.

\(^{16}\) The two communicating parties are sender and receiver of the messages. The bilateral exchange could involve all parties relevant for the harmonization. E.g. RU1 to IM1, IM2 to RU2 etc
• The term Path Section is used to describe a specific network section where there is an interoperable journey, however it also refers to a journey that is within one network.
• If the IM is the owner of the transport (e.g. maintenance train) it will carry out the same role as an RU and all processes will then be applied as normal.

12.3 Explanation on the involvement of the RUs and IMs
The principle of TAP and TAF regulation are underpinned by the communication and collaborative relationship between an RU and the relevant IM. For interoperable business this usually involves more than one RU and/or IM involved during the different sections of the path request. However for domestic business the relationship can be between one IM and one RU only as well. The diagram demonstrates the different types of relationships that the processes will apply to.

12.4 Summary of the outputs
A list of the main content is shown in the following table. The content of these can be accessed in the Annex 12.
<table>
<thead>
<tr>
<th>Outputs Produced</th>
<th>Reference to Regulation / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business processes (diagrams and descriptions)</td>
<td>Specific Section</td>
</tr>
<tr>
<td>PATH REQUESTs</td>
<td>TAF 4.2.2 / TAP 4.2.17</td>
</tr>
<tr>
<td>Cooperation model ⇒ full harmonisation</td>
<td>Note that harmonization is not described in TAF</td>
</tr>
<tr>
<td>Cooperation model ⇒ partial harmonisation</td>
<td></td>
</tr>
<tr>
<td>Open Access (single RU) ⇒ full harmonisation by IMs</td>
<td></td>
</tr>
<tr>
<td>Open Access (single RU) ⇒ partial harmonisation by IMs</td>
<td></td>
</tr>
<tr>
<td>Path requests via an OSS</td>
<td></td>
</tr>
<tr>
<td>Path cancellation by RU ⇒ applicable to Cooperation and Open Access models</td>
<td>TAF 4.2.2 / TAP 4.2.17</td>
</tr>
<tr>
<td>Path alteration by IM</td>
<td>TAF 4.2.2 / TAP 4.2.17</td>
</tr>
<tr>
<td>Path Utilisation notification</td>
<td>Not enforced by the TSIs</td>
</tr>
<tr>
<td>Path modification by RU</td>
<td>TAF 4.2.2 / TAP 4.2.17</td>
</tr>
<tr>
<td>Working timetable ⇒ Long Term Planning</td>
<td>Not enforced by the TSIs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messages</th>
<th>Reference or New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Request</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Details</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Confirmed</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Details Refused</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Cancelled</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Not Available</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Receipt Confirmation</td>
<td>TAF ANNEX D.2 : APPENDIX F / TAP B.30</td>
</tr>
<tr>
<td>Path Coordination<sup>17</sup></td>
<td>Not enforced by the TSIs</td>
</tr>
<tr>
<td>Path Section Notification<sup>18</sup></td>
<td>Not enforced by the TSIs</td>
</tr>
<tr>
<td>Error<sup>19</sup></td>
<td>Not enforced by the TSIs</td>
</tr>
</tbody>
</table>

¹⁷ Waiting approval by Change Control Management
¹⁸ Waiting approval by Change Control Management
¹⁹ Waiting approval by Change Control Management
Path Utilisation notification\(^{20}\) | Not enforced by the TSIs
---|---
Path Studies | Not enforced by the TSIs

In addition to the messages and processes code lists have been developed to support the data exchange. See chapter 10.

12.5 Processes

12.5.1 High Level Overview of the Process

The purpose of implementing TAF/TAP TSIs is to ensure an efficient and concrete exchange of information between IMs, Allocation Bodies, RUs and other service providers. The exchange of information is done in relation to the processes during the planning stage.

This information exchange is essentially bi-lateral and takes place between the IM in charge of the Path Section and the RU that will operate over the Path Section. In the case of an Open Access Operator the RU will be dealing with several IMs.

The processes that make up the ‘Short-Term Path Request’ and the “Long Term Path Request”, known as the Working Timetable are shown as a high level overview. The TAF/TAP messages that need to be produced are overlaid onto the process activities that take place.\(^{21}\)

\(^{20}\) Waiting approval by Change Control Management

\(^{21}\) (**) Note that elements marked with two stars are waiting approval by Change Control Management
Dialogs between RU and IM in Short-Term Path Request process with messages and IT status, Without Harmonization

Dialogs between RU and IM in Short-Term Path Request process with messages and IT status, With Harmonization

Note: *Message Status “alteration” replaced with “modification”
***Message “Answer Not Possible” replaced with “Error Message”
Note: *Message Status "alteration" replaced with "modification"
***Message "Answer Not Possible" replaced with "Error Message"

Note: *Message Status "alteration" replaced with "modification"
***Message "Answer Not Possible" replaced with "Error Message"
Dialogs between RU and IM in Annual Timetable process (Working Timetable) with messages and IT status, Without Harmonization

Note: *Message Status "alteration" replaced with "modification"
**"Message "Answer Not Possible" replaced with "Error M
12.6 The need for Full and Partial Harmonization

Where a short-term path request for traffic (either passenger or freight) running across one or more networks is placed in sufficient time ahead of the operation, the IMs will be able to deliver **full harmonisation** for the path details for all of the sections that comprise the whole journey. Full harmonisation is when the complete journey for the traffic, covering all of the respective path sections, has been able to be fully validated by the IMs involved and all times are confirmed, especially those where the train changes from one IM to another.

Where a path request is placed at the short notice or if the complexity of the path request requires more time than anticipated (according to the deadlines set in national agreements or in their Network Statements), the IMs will not be able to coordinate all of the sections for the whole journey. In this case the RU(s) will receive path details from the IM which are just coordinated with the next neighbouring IM only ensuring that the train travel across that section. In addition, if the RUs are not in a position to coordinate the request, (e.g. do not have resources for the request because of the short notice) the Lead RU or the RU at the beginning of the traffic may place a partially harmonised request. In this case the first IM/RU pair is able to start working on the request; the following IM/RU pair(s) will follow as soon as the request is ready for the next path section. The request is handled more sequentially and it is not necessary that all the latter sections have been confirmed before that train sets off across its journey. This is called **partial harmonisation**.

There are separate path request processes for the two types of harmonisation.

In some cases a request for traffic starts off with the aim of carry out a fully harmonised process and it may be necessary, for whatever reason, to switch from full to partial harmonisation processes. By default the aim of harmonisation is to achieve a full harmonisation of the journey (all path sections), as represented in the Message (Path Request or Path Details) by two separate elements “Type of RU Harmonisation” and “Type of IM Harmonization”.

If this is the case the Lead RU or Coordinating IM sets the Type of Harmonisation to Full. However this is not possible in all cases and can subsequently be changed to Partial. For example if the Lead RU realises that it will not be possible to harmonise the path request with all other involved RUs in due time (e.g. RU at the end of the journey has not clarified the appropriate need for resources), the Lead RU shall have the possibility to change the element ‘Type of RU Harmonisation’ in the message Path Request from ‘full’ to ‘partial’.

On the other hand, it could happen that the IMs are not in a position to send harmonised path details to the RU (in case of an Open Access request) or to all involved RUs (cooperation model) in due time. This could be for example in a case where there is a shortage of time between placing the request involving several networks and the foreseen departure time at the origin of the train. The Coordinating IM or as a default the

22 See chapter 7 for the different uses of the term “Lead RU” in TAF and TAP. In the following text, “Lead RU” is used to designate this RU/AP for TAP.
IM at the first network of the train departure shall have the possibility to change the element ‘Type of IM Harmonisation’ in the message ‘Path Details from ‘full’ to ‘partial’.

12.7. Path Request Scenarios

Several path request scenarios will be possible between the RU(s) and the IM(s) for interoperable passenger/freight traffic. A number of the most commonly scenarios are shown as follows:

Scenario A / Case A
(The RU contacts all involved IMs directly)

Scenario A / Case B
(The RU contacts all IMs via the OSS)

Scenario B / Case A
(Each RU involved in the journey contacts the local IM directly)

Scenario B / Case B
(Each RU involved in the journey contacts the local IM via the OSS)

Scenario A (Case A/B) adheres to the Open Access business model whereby there is only one RU but several IMs involved throughout the journey. Scenario B (Case A/B) adheres to the Cooperation business model whereby more than one RU and IM are involved throughout the journey. These models are documented in the TAF Regulation 4.2.2.1

Note: These are not the only scenarios possible for interoperable traffic, in fact there can also be a combination of the above scenarios.

Also shown in the diagram is the need for coordination and harmonisation.

For some domestic traffic (applicable to the TAP regulation) where only one RU and IM will be involved therefore the scenario is very straightforward. Communication between the parties takes place at bilateral level which can basically seen as a sub-scenario of scenario A case A.

The scenario A covers the process when the RU contacts all the IMs involved. This can also be carried out without harmonization (e.g. through a central tool or in bilateral data exchange) between the different IMs. According to chapter 4.2.2.1 of TAF scenario A)
defined in the following process, the AP contacts all involved IMs directly or via the OSS to organise the paths for the complete journey.

12.8 Short Term Path Request process

The Short Term Path Request process (TAP BP 4.2.17, TAF 4.2.2) is, in fact, made up of a number of different processes that cover the different activities that take place during the planning phase. Key to the activities is the actual placement in time and confirmation of the request itself. However after a path is booked other activities continue to take place such as modifying the path, cancelling the path for a number of days and even activating a path (as is the case in several networks). The main processes are:

<table>
<thead>
<tr>
<th>Process</th>
<th>Relevant for TAP and TAF</th>
<th>Outside the TAF or TAP regulation, but developed from best practise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Request</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Path modification by an RU</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Path cancellation by RU</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Path alteration by IM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Path Utilisation notification</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Path Studies</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the Short Term planning processes an extended process for carrying out the activities in Long Term planning for trains in the Working Timetable has been developed. Currently the use of this process and message exchange will be a recommendation outside of the legal requirements of TAF and TAP.

This section provides an overview to each of the processes that have been developed. Annex 12 describes the Short Term and Long Term planning processes, in terms of descriptions and diagrams, in more detail.

12.8.1 Process “Short Term Path Request”

This process is based on the steps and activities for Short Term planning.

The RU will place a request for the Path Section in the journey and the IM will offer the path back. The RU accepts the offer and the path will be booked by the IM. However it could also occur that the Path Request cannot be answered by the IM (due to technical or logical errors in the request itself). It is also possible that the RU refuses the offer. These possibilities are all described in the process descriptions and documents.

Two separate processes have been produced, one for each of the business models:

- Cooperation model (where several RUs are involved with several IMs)
- Open Access (where one RU is involved with several IMs)
In the situation where there is a possibility to have harmonization between the IMs the harmonisation should be done according to the processes hereafter. In cases where this is not possible (e.g. due to a very short notice request), it is possible for the harmonization to be omitted.

12.8.2 Process “Short Term Path Request – Full Harmonization”

This process is based on the steps and activities for Short Term planning.

All path sections must be harmonised and agreed between the involved RUs before requesting and all involved IMs before an offer can be made back to the RUs.

The RU will place a request for the Path Section in the journey and the IM will offer the path back. The RU accepts the offer and the path will be booked by the IM. However it could also be the case that the Path Request cannot be answered by the IM (due to technical or logical errors in the request itself). It is also possible that the RU refuses the offer. These possibilities are all described in the process descriptions and documents.

Two separate processes have been produced, one for each of the business models

- Cooperation model (where several RUs are involved with several IMs)
- Open Access (where one RU is involved with several IMs)

12.8.3 Process «Short-Term Path Request partial harmonisation»

This process is based on the steps and activities for Short Term planning for Full Harmonisation.

It might be that all path requests may not be able to be harmonised between the RUs and that the IMs will be in a position to always deliver harmonised path details. This is mostly in the case of very short Term Path Requests where the time limit between the path request and the train departure is too short and it is not possible to harmonise the path request and/or path details. This process may be applied for the following business models:

Two separate processes have been produced, one for each of the business models

- Cooperation model (where several RUs are involved with several IMs)
- Open Access (where one RU is involved with several IMs)

12.8.4 Process «Path cancellation by RU»

This process applies to both trains in the Working Timetable and those booked using the Short term planning process.

Whether the path was booked in the long-term planning (working timetable) or as a short request, the RU must have always the possibility to cancel a booked path. This path cancellation may refer to one single day, several or all remaining days. It is also possible
to cancel the whole traffic (all of the path sections) or just one or more partial sections of the traffic (one path section).

However in case there are several path sections with RUs involved, it may even be possible that one of the involved RUs may keep its booked path section and reuse it for another train. By doing so, the path modification process shall be applied instead for the RU that still wishes to use the path section for other traffic.

12.8.5 Process «Path alteration by IM»

This process applies to both trains in the Working Timetable and those booked using the Short term planning process.

Based on the path agreement, the RU can expect that a booked path is available up to its operation. However if an event occurs (e.g. disruption to the path) prior to the start of the operation and the booked path from either the long-term (working timetable) or short term planning is no longer available, the IM must inform the RU as soon as it has the knowledge about this fact.

A cause of the event (e.g. an interruption on the path) needs to be indicated to the RU. This can happen at any time between the moment the path is booked and the departure of the train. The IM is obliged to send an alternative proposal together with the indication the Path is not available. However this is not always possible to, if that is the case the IM must send the proposal as soon as possible.

This path alteration may refer to one single day, several or all remaining days. It is also possible to alter the whole path section or just a part of it.

12.8.6 Process «Path modification by RU»

This process applies to both trains in the Working Timetable and those booked using the Short term planning process.

Based on the path agreement, the RU intends to change some elements of the train that could impact the path details after it has been booked. A modification can be done for one day, several or all remaining booked days. Modifications that need to be communicated are described in the Network Statement and could be for example:

- Change of engine type with same performance
- Reduction in the train length/weight
- Operational stop changes to technical stop

It is then up to the IM to decide whether the modification requested impacts the booked path or not. If the change does not impact the path then the IM responds back to the RU that no change is necessary. If the modification of the path can be done as a result of the change then the IM offers the modified path back to the RU. If the modification of the change cannot be done by the IM the RU is informed to cancel the path and place a new path request.
The consequence of this notification could be that the RU does no longer want to make the change to the train affecting the path and thereby keeps the original booked path untouched.

12.8.7 Process «Path Utilisation Notification by RU»
This process applies to both trains in the Working Timetable and those booked using the Short term planning process.

In some networks it is possible to pre-book a path and it is called an 'on demand path". The capacity has been allocated to an RU who has to inform the IM in due time and prior to the operation on the utilisation of this path, meaning that the train should then be run operationally. This type of practice between RU and IM is mainly used in cases where an RU has regular transport needs but does not know when to make the path request e.g. due to fluctuations in business. All of the path information (e.g. period, origin location, route etc.) is built up in the On Demand Path and is treated in exactly the same way by the IM whereby a path is offered and subsequently booked.

12.8.8 The Need for Path Studies
The intention of a path study is to support the RUs by the IMs while setting-up a path request in anticipation of placing the actual request. It allows the RU to get timings for its intended train service to be used in its planning before placing a path request. Path studies make a significant contribution to the efficiency of the path allocation process for the working timetable. These studies allow applicants’ service plans to be checked for feasibility and, as necessary, taken through into the next stages of the planning process. It is used mainly in the working timetable but can also be applied for the running timetable. No separate process description has been considered for this. This is because the process is identical for a path request, except the last step of the booking the path will not be carried out by the IM.

The IM answer to a path study request before the timetable starts is never binding. If the path study had been placed within the running timetable, the legal status of an IM answer depends to company/national rules.

Path studies are in addition to TAF and TAP. It follows best practice from the sector and can be used with the TAP and TAF standards although it is not mandated by TAP and TAF.

12.9 Train Identifiers
12.9.1 Identification of the train

With the full implementation of TAP and TAF the messages used in the Short Term Path Request will need to follow the Train Identification convention that will be applied as mandatory. It is a composite set of identifiers that uses the following:

- Train ID - A unique ID provided by the RU that stays with train throughout the different planning activities and beyond into Operation. The link between Path ID and Train ID is confirmed/fixed with the Path Confirmation Message.
- Path Request ID – A unique ID provided by the RU when making the path request (staying on through the whole booking process)
- Path ID - A unique ID provided by the IM when offering a requested path
- Case Reference ID – A unique ID that can be used to identify business cases that cover one or more trains that have been requested and can be used by both the RU and IM. For example an RU requests a regular set services for a train travelling A – Z and then Z – A. The RU uses one single Case Reference ID for both services but there will be two separate trains, one for A – Z and another for Z - A

Within the ID section of the messages, only one ID with the same ID-type can be used (e.g. only one Train ID and one Path ID). The exception is the related Identifiers, where more than one relation can be represented.

Currently TAF/TAP regulation does not stipulate the use the Train Identifiers as mandatory for the initial implementation. However provision has been made in the planning messages to allow the use of all or part of the composite identifier. It is therefore possible, that for the initial implementation and up to the point where the use of Train Identifiers becomes mandatory, to use tailored identifiers as defined by the Actors and represented in the TAF and TAP message catalogues.

The use of the ‘Operational Train Number’ as an identifier during the planning phase will be possible for use as by an RU or IM for train identification until the proposed structure of the Train Identifiers has been implemented as a mandatory requirement.

For some Actors the initial implementation may see them using a combination of the Train Identifiers and the Operational Train Number as per their national regulations relating to train identification.

Further details on the aims and usage of the different identifiers throughout the different processes are explained in Chapter 8 of this document where also the link to the description of the TrainID is made.

12.9.2 Related Trains as Part of Train Identification Section

Within the Train Identification Section there are elements that are able to identify other trains that are related to the train in the Message itself. This is to show the relationship for business activities that are related to the train identified in the path request. This includes for example the following scenarios:

- identifying the train with an earlier request e.g. a path study
- identifying connecting services.

These elements are held in the Train Identification Section of the Message and can be identified with a prefix e.g. “Related to other …”. They are used as follows

- …Case reference IDs - the path request is related to the case reference of one or more other trains that are related
• … Planned Train ID – the path request is related to one or more single trains
• … Path IDs – the path request is related to one or more (other) specific path
• … Path Request ID – the path request is related to another (earlier) path request

Within the related identifier section, more than one ID of the same type can be transmitted.

12.9.3 Related Trains as Part of Train Activity

It is also possible to include other trains identifiers in a Message based on a relationship as a result of a specific train activity. Within the Train Activity section it is possible to identify one or more trains as a result of specific activities that can take place on a location within the schedule.

If the Activity Code is related to another train, then one or both of the elements “associatedTrID” and/or “associatedOTN” (that is relevant for the transition to TrID) will need to be completed.

For example it is possible to identify another train that are related to the main train as a result of an attach / detach train activity that can take place at a specific train location.

12.10. Messages for Short Term Path Request

12.10.1 General remarks to all Messages

• An error (as defined by the codes used for Error Message (1)) identified for an optional element will have to be treated in the same way as an error for mandatory element. It will have to be corrected and then resubmitted following the normal process if required.

• A message may contain an indication. This is driven from the business context point of view in order to inform the recipient of this message regarding the consequence of the process activity that has just taken place (e.g. ‘No alternative available’ in the message ‘path details’).

• All messages have an element “Message status” that identifies its current status (‘creation’, ‘modification’, ‘deletion’). This status is generated and subsequently updated only by the system as a result of process activity step that has taken place (e.g. ‘Alteration’ in the case when the RU changes a train parameter in the message ‘path request’ and re-submits the request).

12.10.2 Structure of the Message
This section aims to give a brief overview of the main message elements:

Message header
The message header is common for all RU/IM messages and therefore has no business relevance related to Short Term Planning process. It is purely a technical part of the message. See chapter 11.

Identifier
This element group holds the Train ID and its composite Identifiers for the train as described in the message and any other related train that interacts with e.g. related train could well be another train that is attached to the main train during its journey.

Train information
This element group is used to facilitate the harmonisation between the involved RUs, IMs and to be used for information publication needs. The train information element contains the following information related to the train

- Schedule for the entire journey which includes all the key locations (Origin, final destination, interchange, handover, points with commercial stops) and their timings and activities.

- Reference Point identifies the point from which the train needs to be planned to/from

- It is not always at the origin of a train run where the path planning starts. It may happen that an RU received a specific slot in a terminal at the final destination. In this case, the path planning is done backwards. The planning could also start in an interchange point in the middle of the journey based on an optimal engine circulation program. Therefore the (lead) RU has the possibility to choose the start of the path planning.

- planned train technical data which refers to the composition of the train and other technical parameters for the entire journey from the origin of the train until its final destination and the eventual change of composition and/or technical parameters during the run of the train. This is used for harmonization and information. The technical parameters for the path construction are derived from the Path Information Section.

Path information
This element group is used as a mechanism of communication by the RU and IM which holds the details from RU for each Path section or offered/booked journey section from one IM. The journey section starts at the origin of the train or at the handover point between IM’s and ends at final destination or at the next handover point. This consists of all points that are specific to the Path Section (e.g. Station Stops, Run Throughs, Handover Points).

The data in the Path Information section is used to construct the path (from Path Request) and to inform about the offered data (in Path Details). The structure has the same elements as the train information.
Status of Harmonisation
This element identifies the type of harmonisation (Full, Partial). A dossier (especially path request and/or path details) may be fully or partially harmonised. This attribute indicates the relevant status.

In case of just one single RU and one IM where the train is travelling in one network only, either “full” or “none” can be used, but not “partially”.

On Demand Paths
This element refers to the activation or deactivation of an on demand path. Activation or deactivation is depending on network specific rules.

Operational Train Number (OTN)
This element, OTN, is given by the IM to the RU as soon as the foreseen OTN is known, at the latest before operation (before train preparation phase) by updating the message “Path Details” (status “modification”). In some networks it can be provided beforehand by the RU as part of the Path Request in conjunction with the IM.

Network Specific Parameters section
This element group may be used for specific attributes which are not mandatory on all networks and can be used bilaterally by the RU and IM. This element group should only be used between an RU/IM on a national section when it is absolutely necessary and where no common element in the main message can be identified. Otherwise there is a danger that the RU/IM could start using elements in this group and not use the elements from the common sections.

Before a company creates a Network Specific Parameter element it is required that the company checks the use of the element with the governance entity and its relevant work groups who will advise them if no common element can be created. See also chapter 23.

Affected Section
This element group will be applied only in case of planning activities related to the full or partial path cancellation, alteration or utilisation notification of a path section.

Affected section is a part of the path and it’s defined by the start point of section (first point) and the end point of section (last point) and is effectively used for identifying a specific train that is within a section.

12.11. Overview of the messages
This section aims to give a brief overview of the messages, in particular showing the status of the message as governed by the process activities.

<table>
<thead>
<tr>
<th>Message</th>
<th>Relevant for TAP and TAF</th>
<th>Outside the TAF or TAP regulation, but recommended; developed from best practise in the</th>
</tr>
</thead>
</table>
12.11.1 Message ‘Path Request’

This message is used for the following actions:

- original path request from RU to IM with status ‘new’
- path request with status ‘deletion’ in case the request is withdrawn
- path request with status ‘modification’ in case the RUs wants to modify an element

12.11.2 Message ‘Path Details’

This message is used for the following action(s):

- path details from IM to RU with status ‘new’ for an indication ‘offered’ (this includes draft offer, final offer). If a draft offer turns into the final offer the status of the message will be alteration with an indication “Final offer”.
- path details message with status ‘new’ for an indication ‘no alternatives available’
- path details message with status ‘new’ for an indication ‘booked’
- path details message with status ‘modification’ for an indication (e.g. type of answer = booked)
- The final Path Details message contains all data needed for the train run, i.e. the timing at all operational points along the train journey.

12.11.3 Message ‘Path Confirmed’

This message is used for the following action:

- path confirmation from RU to IM with status ‘new’

12.11.4 Message ‘Path Details Refused’

This message is used for the following action:

23 Waiting approval by Change Control Management
24 Waiting approval by Change Control Management
25 Waiting approval by Change Control Management
• refusal of path details from the RU to IM with status ‘new’
• refusal of path details from the RU to IM with status ‘modification’ if it refers to an alternative

12.11.5 Message ‘Path Cancelled’
This message is used for the following action:
• (partial or full) path cancellation from RU to IM with status ‘new’
• (partial or full) path cancellation from RU to IM with status ‘modification’, if just a partial cancellation had been sent at the beginning

12.11.6 Message ‘Path Not Available’
This message is used for the following action:
• booked path not available from IM to RU with status ‘new’

12.11.7 Message ‘Path Coordination’ and ‘Path Section Notification’
These messages are in addition to TAF and TAP. They follow best practice from the sector and are therefore recommended although it is not mandated by TAP and TAF. They are used for the following actions:
• Holds the objects and elements related to the Short Term Path Request process by keeping them up-to-date among the partners
• For the purpose of coordination - One is containing all planned journey locations of train and path and the another one is strictly related to path sections
 o Path Coordination Message* is linked with the messages - Path Request, Path Details, Path Confirmed, Error - and holds the information related to train passing each of the locations of the entire train journey and the related path information
 o Path Section Notification Message** is linked with the messages Path Cancellation, Path Not Available, Path Utilisation Notification - and holds information related to path either for all path sections or for the specific sequence of sections of the path

12.11.8 Message ‘ErrorMessage’
This message follows best practice from the sector and is therefore recommended although it is not mandated by TAP and TAF. It is used for the following action:
Error message will be sent in return in cases an IM receives an RU message indicating that
• functional elements based on business rules (e.g. no path details; mandatory elements missing, etc.) are wrong or missing
• technical elements (e.g. system failure) are wrong or missing
• both above mentioned are wrong or missing

* Waiting approval by Change Control Management
**Waiting approval by Change Control Management
The Error Message has elements with defined coding structure for Type of error, Severity and Error Code. For further description of the Error message in itself see also 12.14.15

12.11.9 Message ‘Path Utilisation notification’

This message is in addition to TAF and TAP. It follows best practice from the sector and is therefore recommended although it is not mandated by TAP and TAF. It is used for the following action:

- RU requests to the IM to activate or de-activate a path with message element “Type of information” and code for “utilisation notification”

Some networks offer the possibility to book an optional path in advance. This means, that capacity has been allocated to an RU who has to activate it in order to run the train or to de-activate in case the train is not running.

12.11.10 Message ‘Receipt Confirmation’

According to TAF and TAP this message should be sent from the recipient of the message to the originator of the message in order to acknowledge that its legacy system has received the message.

This is required for purposes described in the Regulation where it is important to know at which point in time does the message arrive at receiving systems e.g. when a path request reaches a legacy system of an IM it has five days to plan and offer back the path.

12.12 Elements specific to actors

Key element data of the RUs, the content as for example train parameters, commercial information, cannot be changed by the IM or key element data of the IMs (e.g. received on time, maximum planned speed) by the RU. The data in these elements will be only passing through the messages and should not be allowed to be changed during the other stages of the process. However, it is practised today in some countries that in cases where there is no time to refuse an RU request that it is much easier to change train parameters by the IM, in accordance with the relevant RU.

A list of the key element data ownership can be seen in Annex 12.2.

It is up to the implementers to ensure that the mechanism of access control/validation is carried out according to their needs.

12.13 Business Scenarios

This section provides examples of specific real-life scenarios for a number of the different activities that take place during the planning phase. It shows how messages will be
utilised during the communication between the RU and IM at the various stages of the exemplified scenarios.

In all examples described below the use of TrID / OTN will only be shown where there is references to other trains being involved within the scenario e.g. attach train. This is because this section aims to focus the reader on the scenario itself as opposed to how the scenario works together with train identification – these are covered in other TAF/TAP documentation such as the Handbook on Train Identification, referenced in chapter 8.

12.13.1 Ordinary train running across two IMs networks

Situation

Paths for a train are requested from A via B (commercial stop), C (no commercial stop but change of staff), D (change from IM a to IM b, run through only), to F. Location E is added by the IM as an additional operational location.

![Diagram](image)

Preconditions

- Open access business model
- Handover point = Location D (which is a run through only)
- Location E is an additional run through location that is added by IM b to define the route and operational information
- Train composition is the same
- Change of crew at location C (Operational activity requested by the RU at the beginning)
- Information needs to be published as normal

Approach

The aim of this approach is to provide efficient RU/IM communication where a train is being requested to run across two different networks.

One approach for handling the RU and IM communication is described for this scenario and is explained as follows:
RU communicating with the IM
The RU sends one path request message to IMa for the section A – D. The path request message is sent with a Train Information section that contains all commercial stops (A,B,F), station C and handover point D. The path request message is sent with a Path Information section that contains Stations A, B, C, and Handover point D. In this scenario in the Path Information section it is also mandatory to enter the activity type code for ‘Crew Change’ at Location C. In the Train Information section it is optional for the RU to enter the activity type code for ‘Crew Change’ at Location C.

The RU sends one path request message to IMb for the section D - F. The path request message is sent with a Train Information section that contains all commercial stops (A, B, F), station C (where the train has to stop according to RU request) and handover point D. The path request message is sent with a Path Information section that contains Handover point D and Station F.

IM communicating with the RU
IMa sends one path details message to the RU for the section A – D. The Path Details message is sent with a Path Information section that contains Stations A, B, C, and Handover point D.

IMb sends one path details message to the RU for the section D - F. The path details message is sent with a Path Information section that contains Handover point D, Station F and in addition Location E.

How it looks like in the message:

An example is shown in Annex 12.3
12.13.2 Ordinary train running across two networks

Situation

Paths for a train are requested from A via B (commercial stop), C (no commercial stop but change of staff; RU interchange point), D (change from IMa to IMb, run through only), E (run through only) to F.

Preconditions:
- Cooperation business model (2 RUs involved)
- RUa takes the Lead RU role in this scenario
- There is a need for RU harmonization (not yet done e.g. in timetabling conference)
- RUb requests the run through Location E in the Path Request
- Handover point = D (run through only)
- Train Composition is the same
- Change of Crew at Location C (Interchange point; Operational Activity)
- Information needs to be published as normal

Approach

The aim of this approach is to provide efficient RU/IM communication where a train – operated by two cooperating RUs – is being requested to run across two different networks.

One approach for handling the RU and IM communication is described for this scenario and is explained as follows:

RU communication with cooperating RU
RUa (leading/coordinating RU) sends the “dossier location-based” message to RUb to start the harmonization between the RUs before placing a path request. This message is sent with a Train Information section that contains all commercial stops (A, B, F), station C, run through Location E and handover point D.

RU communicating with the IM
RUa sends one path request message to IMa for the section A – D. The path request message is sent with a Train Information section that contains all commercial stops (A, B, F), station C, run through Location E and handover point D. The path request message is sent with a Path Information section that contains Stations A, B, C, and Handover point D. In the Path Information section it is also mandatory to enter the activity type code for 'Crew Change' at Location C, if known. In the Train Information section it is optional for the RU to enter the activity type code for 'Crew Change' at Location C.
RUb sends one path request message to IMb for the section D - F. The path request message is sent with a Train Information section that contains all commercial stops (A, B, F), optionally station C, run through Location E and handover point D. The path request message is sent with a Path Information section that contains Handover point D, run through location E and Station F.

IM communicating with the RU

IMa sends one path details message to RUa for the section A – D. The path details message is sent with a Path Information section that contains Stations A, B, C, and Handover point D.
IMb sends one path details message to RUb for the section D - F. The path details message is sent with a Path Information section that contains Handover point D, run through location E and Station F.

How it looks like in the message:

An example is shown in Annex 12.3
12.13.3 Splitting of a train

Situation

Paths for a train are requested from A via B, C, D, E to F and Z. The train is formed of two portions (e.g. two train sets) running jointly from A to E. In E (commercial stop), the train is split: one portion continues to F, the other portion to Z.

Preconditions

- Open Access business model
- Handover point = D (run through only)
- Train composition change and commercial stop in E.
- Location B, C are run through locations, requested by the RU
- Information needs to be published about the two trains and then the train split at Location E

Approach

The aim of the approach described below is to provide efficient RU/IM communication where a train is being split during its journey. There are many ways to communicate, however the simplest and most generic approach is to treat this scenario as two trains, the main train (A – F) and the second train (E – Z). This approach for handling the RU and IM is explained as follows:

RU communicating with the IM

The RU sends one path request message to IMa for the section A – D. The path request message is sent with a Train Information section that contains the commercial stops (A, E, F) and handover point D. The path request message is sent with a Path Information section that contains stations A, B, C and Handover point D.

The RU sends two path request messages to IMb for the section, one for the main train (A – F) and one for the second train (E – Z). The path request messages are sent with a Train Information section that contains the commercial stops (A, E, F) and handover point D for the main train and E and Z for the second train. For the main train the Path Information section contains stations E and F as well as the Handover point D. In the Path Information section it is also mandatory to enter the activity code for ‘train split’ at Location E, while it is optional for the RU in the Train Information section. For the second train the Path Information section contains stations E and Z.
The two path requests sent to IMb should show the relationship between the two trains through the use of “associated/attached train” code in location E.

IM communicating with the RU

IMa sends one path details message to the RU for the section A – D. The path details message is sent with a Path Information section that contains stations A, B, C and Handover point D.

IMb sends two path details messages to the RU, one for the main train for section D – F and the other for the second train for section E – Z. For the main train the Path Information section contains stations E and F as well as the Handover point D. For the second train the Path Information section contains stations E and Z.

How it looks like in the message:

An example is shown in Annex 12.3

12.13.4 Attaching of a train to another train

Situation

Two trains are running A – F, Y – F jointly coupled between B and F. The train is formed of two portions (two train sets) running jointly from B to F. Both parts run individually from A – B and Y - B. In B they are attached at the commercial stop, the trains are joined and become one train.

Preconditions

- Open Access business model
- Two Trains attach in Station B
- Location C is a run though location
- Handover point = D (run through only)
- Both Trains runs from B to F in one combined train-set
- Information needs to be published about the two trains attaching at Location B
Approach

The aim of the approach described below is to provide efficient RU/IM communication where two train sets are joining to create a combined train set for the rest of its journey. There are many ways to produce the efficient communication, however the simplest and most generic approach is to treat this scenario as two trains, the main train (A – F) and the attached train (Y – B). This approach for handling the RU and IM is explained as follows:

RU communicating with the IM

The RU sends two path request messages to IMa for section A - D, one for the main train (A – F) and the other for the attached train (Y – B). For the main train the path request messages is sent with a Train Information section that contains all commercial stops (A, B, C, E, F) and handover point D. The path request message for the main train (A – F) is sent with a Path Information section that contains stations A, B, C as well as the Handover point D. In the Path Information section it is also mandatory to enter the activity type code for ‘0016 attach train’ at Location B in the message for the section A – D, while it is optional for the RU in the Train Information section. The related train identifier/OTN (for the attached train) that will be attached at Location B will also be added into the Train Activity section.

For the attached train Y – B the path request message is sent with a Train Information and Path Information section of Y and B only. The related train identifier/OTN (for the main train) that the train will be attached to will also be added.

The RU sends one path request message to IMb for the section D - F. The path request message is sent with a Train Information section that contains all commercial stops (A, B, C, D, E, F) and handover point D. The path request message is sent with a Path Information section that contains station F and Handover point D.

IM communicating with the RU

IMa sends two path details messages to the RU, one for the main train for section A – D and one for the second train Y – B. The path details messages are sent with a Path Information section that contains A, B, C, D in the message for the main train and stations Y and B for the attached train.

IMb sends one path details message to the RU for the section D - F. The path details message is sent with a Path Information section that contains E and F and Handover point D.

How it looks like in the message:

An example is shown in Annex 12.3
12.13.5 Trains with different routes on specific days

Situation
Paths for a train are requested from A via B, C, D, E to F. The train only runs on Sundays between A and B, but daily between B and F.

Train with different routes per day

A B C D E F

Sundays only daily

Preconditions
- Open Access business model
- Train Composition is the same for the different calendars
- No specific operational activities taking place
- Information needs to be published for the two trains

Approach
The aim of this approach is to provide efficient RU/IM communication where a train is being requested to run across two different networks for different running days and having extended locations on some of the days.

This approach is only one method of handling the RU and IM communication for this scenario. There are other approaches that can be implemented, e.g.
- Approach 1: Treated as two different trains with different calendars (A – F & B – F)
- Approach 2: Sunday train (A-B) linked with the daily train (B – F)

Approach 1 is described as follows:

RU communicating with the IM
The RU sends one path request message to IMa for the section A - D with a calendar element showing all Sundays and another path request message to IMa for the section B - D, with a calendar valid for all days except Sundays. The two path request messages are sent with different Train Information sections (A – F for the Sunday Train and B – F for the Daily except Sunday train). The two path request messages are sent with different Path Information sections (A – D for the Sunday Train and B – D for the Daily except Sunday train).

The RU sends one path request message to IMb for the Sunday train and another path request message for train running every day except Sunday. The two path request
messages are sent with different Train Information sections (A – F for the Sunday Train and B – F for the Daily except Sunday train). The messages are sent with the same content in the Path Section (D – F).

IM communicating with the RU
IMa will send back two path details messages one for Daily except Sundays train (B – D) and one for Sunday (A – D).
IMb will send back two path details messages one for Mon – Sat (D – F) and one for Sunday (D - F). This could be the same path but could also be two different paths.

How it looks like in the message:
An example is shown in Annex 12.3

12.13.6 Change of a booked train for certain days (e.g. planned re-routing)

Situation
Paths for a daily train have been booked from A via B, C, D, E to F. The booked train runs daily. The RU originally wishes commercial stops in A, B and F.

During the running period of the train, closure of station B is necessary for one day on short notice. The train has to be re-routed via X and will leave earlier in A (relates to the process “Path Modification by IM”).

![Diagram of Change of a booked train](image)

Preconditions
- Open Access business model
- Handover point = D (run through only)
- Standard RU/IM communication for the initial path booking
- Train Composition is the same
- Information needs to be published as normal
- Information will be updated after the disruption – Closure of Station B
- Closure of B is supposed to be known after the path request made by RU
- Closure of station B is supposed to be known before the sale of the tickets begins for the day of B closure
- The closure of Station B has no impact to the path of IM b

Approach
The aim of this approach is to provide efficient RU/IM communication where a train is being requested to run across two different networks for different running days and being rerouted one day.

One approach for handling the RU and IM communication is described for this scenario and is explained as follows:

IM communicating with the RU
When the closure of Station B is known IM a sends the Path Not Available message to RU informing that Station B will be closed for one day: The Affected Section includes the Start of Section (A), End Section (D) and the Calendar which will be for the one day of closure

As soon as possible IMa sends an alternative Path Details message with Location X in the section (A – D) for the one day; any altered timings will also be included in the message

How it looks like in the message:

An example is shown in Annex 12.3
12.13.7 Trains with Through Coaches

Situation

Paths are requested for a train A via B, C, D, E to F. Some coaches of the train are detached in E. These coaches are attached to another train from W via E to Z. Through coaches (coach groups) from A to Z are established.

Preconditions

- Through coaches in a station of IMb
- Train W - Z a priori unknown from IMa
- Trains A - F and W - Z are nevertheless associated

Approach

The aim is to provide efficient RU/IM communication, where two different trains stop at the same station, in order that a coach is detached from one train and attached to a second train.

RU communicating with the IM:
A Path Request Message is sent by the RU to IMa. The Train Information contains the Activity Code at Location E “Detach Coach”.

A Path Request Message is sent by the RU to IMb for train (A – F). The Message has to indicate that a coach is detached in Location E via the Activity Code “Detach Coach”. The related Train Identifier/OTN on which the attached Coach will be added (train W – Z) at E will also be added into the Train Activity section.

The Path Request Message sent by the RU to IMb for the other train (W – Z) has to indicate that the train in station E receives a coach from train A - F (related Train Ids). The Message has to indicate that a coach is attached in Location E via the Activity Code “Attach Coach”. The related Train Identifier/OTN on which the attached coach came from (train A – F) at E will also be added into the Train Activity section.
IM communicating with the RU:
A Path Details Message is sent by the IMa back to the RU.

Two Path Details Messages are sent back by IMb to the RU. The Path Details Message is sent by the IMb back to the RU for Train A - F. The Message has to indicate the times at station E, and the Train Id/OTN of the train for which the coach is attached to (train W – Z). The Path Details Message is sent by the IMb back to the RU for Train W - Z. The Message has to indicate the times at station E and the Train Id/OTN of the train for which the coach is detached (train A – F).

How it looks like in the message:

An example is shown in Annex 12.3

12.13.8 Trains that cannot leave before another train has arrived (diagram dependence)

Situation

Paths are requested for two trains: A to F and F to A. The RU has to use the same physical train set, therefore, the second train cannot leave F before the first train has arrived in F.

Same physical train set is used IMa IMb

A B C D E F

Preconditions

- Open Access business model
- Handover point = D (run through only)
- No commercial stops except A & F
- Train Composition is the same (same physical train set). RU requires the IM to take this into account.
- Considered as two different trains where Train A – F is planned before Train F – A
- Running days of train A – F are the same as for F - A

Approach

The aim of this approach is to provide efficient RU/IM communication where a train is being requested to run in one direction, known as the first train (A – F), and then the train runs again (as a different service) in the reverse direction, known as the next train (F – A).

One approach for handling the RU and IM communication is by showing train activities (Next Working) to link the two trains (including the use of related Train IDs/OTNs).

This scenario is explained as follows:

RU communicating with the IM

The RU sends one path request message to IM a for the path section A – D. The path request message is sent with a Train Information section contains commercial stops (A, F) and handover point D. At Location F, the train activity type code "Next Working" is entered, together with associated attached Train ID/OTN of the next train. The path request message is sent with a Path Information section that contains Commercial Stop A and handover point D.

The RU sends one path request message to IM b for the path section D - F. The path request message is sent with a Train Information section contains commercial stops (A, F) and handover point D. At Location F, the train activity type code "Next Working" is entered, together with associated attached Train ID/OTN of the next train. The path request message is sent with a Path Information section that contains Commercial Stop F and handover point D.

IM communicating with the RU

IMa sends one path details message to the RU for the section A – D. The path details message is sent with a Path Information section that contains Commercial Stop A and handover point D.

IMb sends one path details message to the RU for the section D – F. The path details message is sent with a Path Information section that contains Handover point D and Station F.

How it looks like in the message:

An example is shown in Annex 12.3
12.13.9 Trains that need to be shunted from one platform to another at a location during the train run

Situation

Paths for a train are requested from A via B to F. At B, the train needs to arrive at track 1 but has to leave from track 9. In reality, the train is shunting out of track 1 into track 9 and continues to the next station from track 9.

Preconditions

- one RU and two IM (IMa, IMb)
- assumption daily train
- unchanged composition in B
- train change platform because of track layout
- publication as through train
- Passengers can only alight on track 1 in location B

Approach

The aim of this approach is to provide efficient RU/IM communication where a train is being requested including shunting according to the track plan of station B and followed to run across two different networks.
RU communicating with the IM
The following is just an example on how to handle the business scenario. Every solution is depending on national rules.

The RU sends one path request message to IMa for the section A – D with the path information section showing two subsidiary locations at B; one primary location with an attached subsidiary location at B showing track 1 (LS1) with an arrival and a departure time and the same primary location this time with a subsidiary location for track 9 (LS9) including a departure time. The train information section contains all commercial stops (A, B, C, D, E, F). There will be a Train Activity Type as a shunting operation for each location at B.

The path request message is sent for train running every day, else without any other difference.

The RU sends one path request message to IMb for train running every day from D – F.

The train information section contains all commercial stops (A, B, C, D, E, F). The path information section contains D, E, F as ordinary stops.

IM communicating with the RU
IMa will send back one path details message for running every day from A to D, including both subsidiary locations at B (LS1 and LS9) and their relevant times.

IMb will send back one path details message for D – F.

How it looks like in the message:
An example is shown in Annex 12.3

This section provides the specific business rules/conditions on how specific elements within the messages will need to be applied for certain situations.

The business rules for applying the calendar are explained in 12.15.

12.14.1 Train Weight/Train Length
Determining the Train Weight
If the “Traction Weight” and the “Weight of the set of carriages” are both entered into the message, the “Train Weight” can be calculated as the sum of the two elements.

If the “Train Weight” and the “Weight of the set of carriages” are both entered into the message, the “Traction Weight” can be calculated as the difference of the two elements: Train Weight – Weight of the Set of Carriages
If the “Train Weight” and the “Traction Weight” are both entered into the message, the “Weight of the set of carriages” can be calculated as the difference of the two elements: Train Weight – Traction Weight

Determining the Train Length
Note: The element Length under the element group Traction Details denotes to the length of the Traction Unit. It is a global element that is reused in other Messages hence it is given the generic element name of Length

Note: The Length element will need to be entered in millimetres and will need to be converted on application level only to metres if it is used in the calculation.

If the “Length” and the “Length of the set of carriages” are both entered, the “Train Length” can be calculated as the sum of the two elements.

If the “Train Length” and the “Length of the set of carriages” are both entered into the message, the “Length” can be calculated as the difference of the two elements: Train Length – Length of the set of carriages

If the “Train Length” and the “Length” are both entered into the message, the “Length of the set of carriages” can be calculated as the difference of the two elements: Train Length – Length

Therefore as a general rule, at the application level, it will not be required to implement all three elements regarding the weight/length as mandatory elements in the XML. It might be left to the application to calculate one of the three elements – under the precondition that the two remaining elements are entered as mandatory.

12.14.2 Loco Type Number

Currently there is no common coding for the European Loco Type. It can be assumed that each IM is familiar with the Loco Types and its characteristics of its registered customers (the RUs). Therefore, this element will be based on national basis, defined by each IM: However this element remains within main structure of the Message as opposed to being in the Network Specific Parameters section – this is because there is likely, at some point in time, to be a European Coding standard. It also serves to keep all traction details together in one section as opposed to splitting the information across the two sections.

The recommended usage of the 12 Alpha-numeric element is as follows:

- The first four digits: company code of engine operator
- The next 8 digits based on national/company rules (e.g. 21810001216 = RCA Taurus)

As there are various models for the ownership and usage of a loco, it is important that the RU which is operating the engine needs to be indicated.
12.14.3 Combined Traffic Load Profile

This element refers to combined load units that can be used for Freight Requests only. There are two entry options:

- One option refers to “P” (Semi-trailer/road semi-trailer):
 - P1 requires the code in case the gauge of the semi-trailer is ≤ 2500 mm.
 - P2 requires the code in case the gauge of the semi-trailer is > 2500 mm ≤ 2600 mm
- The other option refers to “C” (Swap body):
 - C1 requires the code in case the gauge of the swap body is ≤ 2550 mm.
 - C2 requires the code in case the gauge of the swap body is > 2550 mm ≤ 2600 mm

The RUs may indicate the relevant values if they are familiar with the IMs line profiles. In case there is a path request for a train with combined traffic load, the IM should indicate in the Path Details Message the possible max. value for all 4 elements (P1, P2, C1, C2).

12.14.5 Highest planned speed and minimum break weight percentage

Data elements that need to be entered into the Path Details Messages to keep them consistent on their structure referring to IM requirements and information towards the RU. Not to be used in the communication from RU to the IM but only when the IM communicates back to the RU.

12.14.6 Braking weight and Minimum Brake Weight Percentage

Braking Ratio value is entered by the RU in a Path Request whereas the MinBrakedWeightPercentage value is entered by the IM in the Path Details.

From a business perspective these elements must be referred to in terms of a % but have to be entered in the Message as a numeric integer value in the range from 1 up to 999 e.g. 11% will be entered as 11.

12.14.7 Use of the Train Activity Type and Associated Trains

The list of Activity Type Codes is split into two types: Common European Codes that are available to be used by all countries and National/Company codes that are only relevant to a specific network and to be used in the RU / IM communication only for that network. In both cases the element size will be 4 alpha-numeric.

Common European Codes will have the structure as follows:

- 4 Digit Code (numeric) that represents the Code List values for the common activities

28 Waiting approval by Change Control Management
National Codes will have the structure as follows:
- The first two characters will represent the country of the network in ISO format e.g. UK
- The remaining two characters (represented as a numeric) will represent a single unique activity within the network e.g. 01 = Stops shorter than 30 secs

See also chapter 12.9.3

12.14.8 Timing at location

When placing a Path Request the RU enters the following times if the location is a stopping point (e.g. at station): Earliest or Latest or both time(s) for Arrival and/or Departure

When placing a Path Request the RU enter the following times if the location is a run through: Leave Arrival and Departure blank

When editing Path Details the IM enters the following times if the location is a stopping point (at station): Actual time(s) for Arrival and/or Departure

When editing Path Details the IM enters the following times if the location is a run through: Actual times for Arrival and Departure which must be same. In addition the IM must use the Activity Type Code for “Run Through”.

12.14.9 Dwell Time

The Dwell Time element is entered in the Path Request to include a required minimum waiting time of the train at a particular location. It is given in the format of a one decimal numeric value whereby the integer part of the value represents the time minutes and the decimal part of the value represents the time in seconds.

The integer value will be represented in minutes only, therefore any dwell time that is in hours (> 60mins) will need to be converted to minutes e.g. 3 hours dwell will need to be represented as 180

The decimal value will be required in all cases (even if there are no additional seconds). Each decimal value represents 6 seconds of time e.g. 0.1 = 6 secs, 0.2 = 12 secs etc... Any other value will have to be rounded to the nearest 6th second e.g. 16 secs will be rounded to 18 seconds and will be represented as 0.3

For example: A Dwell Time of 12mins & 28 seconds will need to be represented as a value 12.5
12.14.10 Received on Time

This element is only to be used for the Long Term planning purposes (for the annual timetable) in order to indicate whether a request has been placed before or after the deadline for placing request for the annual timetable (working timetable). An RU may place a path request either on time (before the second Monday in April of the year before) in order to “benefit” from the procedure as described in EU Dir. 2012/34, Articles 45 and 46 or may place a late path request (after the second Monday in April of the year before). The IM must indicate if the path request was received on time. This is mainly a legal issue.

12.14.11 Status of RU/IM harmonization

These two elements in this group identify the status of the harmonisation; Interchange harmonised or Handover harmonised – depending on RU or IM respectively.

If it is the Path Request Message from the RU this status reflects that the RU harmonisation has taken place (full or partial or none) in the element Status of RU Harmonization.

If it is the Path Details Message from the IM this status reflects that the IM harmonisation has taken place (full or partial) in the element Status of IM Harmonization.

Status of Harmonisation (Interchange & Handover) is a Global element – needs to be in all Messages within the Short Term Path Request processes.

12.14.12 Use of Affected Section

This element group will be applied mainly in case of planning activities related to full or partial path cancellation, alteration or path utilisation notification of a path section to show the part of the train journey that has been impacted (= the affected section).

However before the implementation of the Train ID the Affected Section shall also be used to identify the train (resp. the request) up to the point that it is being booked. This is for the following messages - Path Confirmed (PC), Error (E) and Path Details Refused (PDR). The affected section is used to relate to the identification of the train in the earlier message(s) so it has to contain the same Train Number with the valid locations than in the earlier message(s). This is similar to the concept before implementation of Train ID described in chapter 8.

Affected section is defined as the first point of section (start point) and the End point of Section (last point). Until the Train ID is implemented, the effected section also includes the Train Number (optional afterwards).

29 Waiting approval by Change Control Management
12.14.13 Network Specific Parameters

Network Specific parameters are defined by IM in accordance with national conditions/rules where there is no commonly agreed element that fulfils the same business purpose between the various actors. The use of this shall be limited to the absolute necessary minimum.

For example the element “Network Specific Parameters” in the Affected Section can be used for RU to IM or IM to RU communication after the path had been booked. The IMs may use it in the “Path Not Available” Message.

For example, a booked path refers to a train length of 620 m. For a specific period, the train length needs to be limited to 400 m. The RUs may use this element as agreed with the IM e.g. in the “Path Utilisation Notification” Message to indicate the train length of 400 m for the period the “Path Utilisation Notification” Message refers to.

12.14.14 Contact Detail

The Sender of a message must have a phone number or E-Mail entered or both. Both are shown as Optional but one has to be completed and shown within the message.

12.14.15 Error Message

Where there is a problem with the Path Request an “Error Message” has to be used to communicate back to the RU by the IM. This message includes both functional and technical errors connected to the Path Request.

An Error Code is required to be used in the message. There will be an Error code for each element where a problem has been identified. The error code for the element is obtained from the code list and is used to identify an invalid or missing element. In addition there is a possibility to provide additional text along with the predefined code, known as the Error text. The element can remain as blank, does not need to be completed for each Error Code.

The Error Codes have been structured so that it is possible to indicate there is an error with a specific element in the message or within the element group of the message. It can therefore be possible to populate the Error Message with specific errors or errors related to an element group. This will be done at the application level.

In addition, it is possible to enter a textural description of errors within the request message within the FreeText element that is also available. This can be for element specific errors but can also be extended to cover logical errors within the request, e.g.

30 Waiting approval by Change Control Management
where the train locations do not make sense. Again this will have to be built at the application level.

The code list of Error Codes element is split into two types: Codes for the Common elements in the Message and codes that are only relevant to the elements within the Network Specific Parameters.

Common codes will have the structure as follows:
- 4 Digit Code starting from 5000

Network specific codes will have the structure as follows:
- 4 Digit Code starting from 6000

These will be national Error Codes related to elements entered into the Network Specific Parameters section that have been agreed by RU/IM and held and maintained on the IM system only. These are not required as a common list.

12.14.16 Type of Request

The “Type of Request” element is needed to indicate which particular business process the RU is applying for. Indication of the request type is necessary for IMs to start the particular business process according to the type (study, or binding path request or modification of the existing contracted object). It is mandatory in Path Request and Path Details, but optional in Receipt Confirmation (as this just provides additional information about the process from which the receipt is required).

The “Type of Information” is used in several messages and are used several times for different purposes. Therefore the recipient has to know the status which indicates why the message was sent. To recognise to which process does this message fit, and also to which particular process step does this particular message have to be considered. It is Mandatory in Path Request, Path Details and Path Utilisation Notification, optional in Receipt Confirmation.

12.15 Application of the Calendar in the Message
12.15.1 Overview of the Calendar

There is a key business requirement to include calendars into all of the STPR Messages that have been defined. The aim of the Calendar is to provide the recipient of the message with the necessary information on the operational status of the train either during the planning stages or after a train has been booked. For example, to include calendar related changes such as cancellation of days run. The Calendar contains

- The start date of the running train
- The end date of the running period
- The operational running pattern (e.g. runs Monday to Fridays only).

The calendar is used for the following business purpose:

During the processes of booking a path:

- **Path Request** – The RU requests a train for a path section; the message will contain two calendars in the message. There will be a:
 - Calendar for the whole journey (linked to the TRAIN object in the TRAIN INFORMATION section).
 - Calendar for the path section requested (linked to the PATH REQUEST object and held in the PATH INFORMATION section).

 Both of the calendars will include the proposed operational dates/pattern of the train, for the journey and path section respectively. The dates in the calendar are defined by the departure time from:

 - The first location of the whole journey for the TRAIN Calendar
 - The first location of the path section for the PATH REQUEST Calendar

 All offsets are calculated from this location as opposed to from the reference location which is included in the TRAIN INFORMATION section of the message.

- **Answer Not Possible** – If, for whatever reason, the IM is not able to process the path request; the message will contain the calendar that is linked to the first location of the affected section that is requested by the RU along with logical errors (schedule does not make logical sense) and/or physical message content errors (element in the message is unknown /missing)

- **Path Details** – If the Path Request is processed by the IM who makes an offer back to the RU; the message will contain the calendar that is linked to the first location of the path section. It contains

 - the offered operational dates/pattern for the path section that was requested. The RU makes one request with one path section calendar but the IM could reply offering one or more Path Details message each containing a different path section calendar that complements the originally requested RU calendar.
For example: An RU requests a train service for Mon to Fri in the path section calendar of the Path Request. The IM may offer back two path details messages covering the overall Mon – Fri request with one path details message for the service for Mon to Thu and the other message for the Fri only service.

- Path Confirmed & Path Details Refused – The RU either confirms the IM offer or rejects it; the message will contain the path section calendar of the IM from the Path Details Message

After a path has been booked

- Path Cancelled – The RU is able to make a partial or complete cancellation of the booked path; the message will contain the calendar that is linked to the first location of the affected section together with the operational dates/pattern the RU wishes to cancel.

- Path Not Available – If it is not possible for the IM to offer a path (e.g. as a result of a disruption); the message will contain the calendar that is linked to the first location of the affected section together with the operational dates/pattern that the IM has to cancel.

Activating/Deactivating a Path

- Path Utilisation Notification – For certain networks there is a requirement for the RU to indicate whether a train will run or not against a booked path; the message will contain the calendar that is linked to the first location of the affected section together with the operational dates/pattern that have either been activated or deactivated.

Receipt Confirmation

- A calendar will be an optional element in this message which relates to the affected Section. The message will contain the calendar that is linked to the first location of the affected section.

12.15.2 Preconditions for the use of the calendar

The Calendar for Train Information and Path Information are always calculated from the origin of each object (whole journey for Train object, first location of Path for Path Request object) irrespective of Path Planning Reference Location.

The rule for the Offset is always from the Origin Location and offsets in both Train Information and Path Information sections are always calculated from that point forwards. This will result in always a positive offset in all cases.

The Reference Location for planning is still the location for which the RU requests the calendar. It remains unchanged throughout the communication with the IM and every participant will need to calculate the calendar at the Reference Location based on the calendar at the Origin Location in conjunction the Offset in the Path Request Message. In
the case where the Reference Location needs to be changed by the RU then the revised Reference Location needs to be defined.

12.15.3 Calendar used in section related Messages
For all of the messages related to an affected section within a Path the calendar is used linked to the start location of that section
The affected section can be for the whole path section or part of a section.
Offsets will not be required to be calculated for these messages as no specific locations are identified in these messages – only the start and end of a section are provided in the message
The messages that are based on the affected section are:
- Path Confirmed
- Path Cancellation
- Path Details Refused
- Error Message
- Path Not Available
- Path Utilisation Notification

12.15.4 The Elements of a calendar

The Calendar Element
The calendar contains the following elements:
- Start Date = start of the train operation; represented as a DateTime format where the time will not be relevant and will be padded out to 00:00:00 to represent hh:mm:ss
- End Date = end of the train operation; represented as a DateTime format where the time will not be relevant and will be padded out to 00:00:00 to represent hh:mm:ss
- Bitmap Days = Pattern for which the train runs during the start and end date; represented as a bitmap string (1,0)

12.15.5 Rules related to the Calendar Element
- Both the Start Date and End Date are mandatory elements and must be present with a date that is within the Timetable period
- Bitmap Days elements is a mandatory element and need to be included along with the Start date.
- The Bitmap Days is a string of values where 1 represents a day that the train will run and 0 represents a day that the train will not run; Each value signifies a day between the Start and End Date
Where a specific pattern is needed (e.g. running every Friday) or the train is running more than one day a Bitmap must be included in the message to reflect that pattern

- If there is a Bitmap days string
 - The size of the string for Bitmap days must equal the number of days between Start Date and End Date inclusive and cannot be more or less. If the pattern is different than this will give rise to an error
- If the Start and End Date are the same
 - Then the Bitmap String will still apply even though the train is only running for one day

12.15.6 Using the calendar element

Following examples is for showing the use of the different calendar elements. They are only seen as support for exemplifying for implementation and are not covering all scenarios. Each IM/AB and RU is responsible for correct implementation of these functionalities in their national applications so all situations according to national allocation rules are covered.

Train running for one day

- Start Date = 1/1/12; End Date = 1/1/12;
- Number of Days the train will run = 1 day
- Bitmap Days = “1”

Train running for all days for a period

- Start Date = 1/1/12; End Date = 6/1/12;
- Number of Days the train will run = 6 days
- Bitmap Days = “111111”

Train running for all days for the rest of the Timetable

- Start Date = 12/11/12; End Date = (8/12/12)
- Number of Days the train will run = 27 days
- Bitmap Days = “111111111111111111111111111”

Train running daily except Sundays for the rest of the Timetable

(O denotes the days the train will not run
- Start Date = 12/11/12; End Date = End of Timetable (8/12/12)
- Number of Days the train will run = 24 days
- Bitmap Days = “1111110111110111110111111”
12.15.7 The use of the Calendar for a Path Request

The application of the Calendar can best be described by the following scenario that shows its interaction within the message.

Situation

A path for a train is requested from location A to E passing through two different path sections. The Handover location is at location C which is also the Reference Location in this case. The train travels for 3 days leaving Location A on Day 1 at 11.30, passing across midnight and reaching Location C at 04.30 on Day 2 and then passing across midnight and reaching Location D at 01.30 on Day 3. The train finally reaches its destination Location E at 23.30 on Day 3.

![Diagram showing path from A to E with locations and times]

Preconditions

- This is an Open Access Model with one RU and two IMs (IM a, IM b)
- A single train has been requested across a start / end date of 30th July 2012 to 2nd of August 2012
- The train travels across 3 day leaving A on Day 1 at 11.30 and arriving on Day 3 at 23.30 (based on the RU requested timetable)
- The train is offered back with one Path Details Message per IM (IM a and IM b)
- Location times arrival and departure will be treated as the same for request and offer
- The Path Request is correct and contains no logical or physical errors
- All train activities and other preconditions have been ignored in this scenario

Approach

The aim of this approach is to provide efficient RU/IM communication where a train is being requested and offered. In particular this scenario shows how the Calendar and offsets will work together.
Message
RU -> IM a
Path Request Message
RU populates Train / Path Information with proposed Locations / Times
RU populates the two Calendars in Train Information & Path Information
Path Planning Reference Location is Intermediate Location C
Offsets in Train / Path Information are calculated from first Location (Journey / Sect

<table>
<thead>
<tr>
<th>Path Planning Reference Location</th>
<th>Planned Calendar</th>
<th>Planned Calendar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date</td>
<td>2012/07/30</td>
<td>Start Date</td>
</tr>
<tr>
<td>End Date</td>
<td>2012/08/02</td>
<td>End Date</td>
</tr>
<tr>
<td>Bitmap Days</td>
<td>1111</td>
<td>Bitmap Days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planned Journey Locations</th>
<th>Planned Journey Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Time</td>
</tr>
<tr>
<td>A</td>
<td>11.30</td>
</tr>
<tr>
<td>B</td>
<td>19.00</td>
</tr>
<tr>
<td>C</td>
<td>04.30</td>
</tr>
<tr>
<td>D</td>
<td>01.30</td>
</tr>
<tr>
<td>E</td>
<td>23.30</td>
</tr>
</tbody>
</table>

RU Populated
IM a Populated
IM b Populated
Offset calculated
RU -> IM b
Path Request Message
RU populates Train / Path Information with proposed Locations / Times
RU populates the two Calendars in Train Information & Path Information
Path Planning Reference Location is Intermediate Location C
Offsets in Train / Path Information are calculated from first Location (Journey / Sect)

<table>
<thead>
<tr>
<th>Path Planning Reference Location</th>
<th>Planned Calendar</th>
<th>Path Information</th>
<th>Planned Calendar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start Date</td>
<td>Start Date</td>
<td>2012/07/31</td>
</tr>
<tr>
<td></td>
<td>End Date</td>
<td>End Date</td>
<td>2012/08/03</td>
</tr>
<tr>
<td></td>
<td>Bitmap Days</td>
<td>Bitmap Days</td>
<td>1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planned Journey Locations</th>
<th>Planned Journey Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>11.30</td>
</tr>
<tr>
<td>B</td>
<td>19.00</td>
</tr>
<tr>
<td>C</td>
<td>04.30</td>
</tr>
<tr>
<td>D</td>
<td>01.30</td>
</tr>
<tr>
<td>E</td>
<td>23.30</td>
</tr>
</tbody>
</table>

RU Populated
IM a Populated
IM b Populated
Offset calculated
IM a -> RU
Path Details Message
IM populates Path Information with offered Locations / Times
Locations / Times and Calendar remain unchanged by the IM
Offsets in Path Information are calculated from first Path Location in the Section

<table>
<thead>
<tr>
<th>Path Information</th>
<th>Original Path Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Calendar</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>2012/07/30</td>
</tr>
<tr>
<td>End Date</td>
<td>2012/08/02</td>
</tr>
<tr>
<td>Bitmap Days</td>
<td>1111</td>
</tr>
<tr>
<td>Planned Journey Locations</td>
<td>Planned Journey Locations</td>
</tr>
<tr>
<td>Location</td>
<td>Time</td>
</tr>
<tr>
<td>A</td>
<td>11.30</td>
</tr>
<tr>
<td>B</td>
<td>19.00</td>
</tr>
<tr>
<td>C</td>
<td>04.30</td>
</tr>
</tbody>
</table>

IM b -> RU
Path Details Message
IM populates Path Information with offered Locations / Times
Locations / Times and Calendar are changed by the IM
Offsets in Path Information are calculated from first Path Location in the Section

<table>
<thead>
<tr>
<th>Path Information</th>
<th>Original Path Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Calendar</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>2012/07/31</td>
</tr>
<tr>
<td>End Date</td>
<td>2012/08/03</td>
</tr>
<tr>
<td>Bitmap Days</td>
<td>1111</td>
</tr>
<tr>
<td>Planned Journey Locations</td>
<td>Planned Journey Locations</td>
</tr>
<tr>
<td>Location</td>
<td>Time</td>
</tr>
<tr>
<td>C</td>
<td>04.30</td>
</tr>
<tr>
<td>D</td>
<td>01.30</td>
</tr>
<tr>
<td>E</td>
<td>23.30</td>
</tr>
</tbody>
</table>

12.15.8 Application of the Calendar in the Affected Section

This element group will be applied only in case of planning activities related to the full or partial path cancellation, alteration or path utilisation notification of a path section.
Affected section is defined by the first location within the path section (start point) and the end point within the path section (end point). The start point and end point could be all or part of the path section. The Start, End and Bitmap elements are mandatory in the Calendar. The calendar of the Affected Section must be consistent with the calendar that has been offered or allocated in the Path Details message. It will be the one linked to start point of the affected section.

12.16 Handling of Handover in Border Sections

This section provides information on how messages will need to be applied for certain situations crossing network borders. A border section is a special section between two IM’s. The problem is the differences between IM responsibilities. Some border sections can have different definitions of where the responsibility lies. This is the:

- Legal responsibility between IM’s for interoperable traffic
 The network border is a point where legal responsibility changes between the IMs (this is the handover point). This can be, but does not have to be in conjunction with a state border.

- Timetable responsibility between IM’s for interoperable traffic
 This is the point where there is a change to the timetable responsibility. This can be a mutual border point agreement between the IM’s.

In some cases the border section can consist of one or more points which are important for both of the IM’s. Those points can have an implication for interoperable or domestic traffic. This can be shown using the following example.

Location B = Timetable responsibility point
Location G = State border point (only)

31 The described situation can apply to the border between two IMs within one country as well as to the border between two IMs on a state border
The solution for the mutual communication between all actors must be possible for all types of border sections scenarios. IMs will need to identify the mutual agreements of the location points which are important for timetable information for every border section. Those points will be part of Train Information section for Path Details which is created by the IM who is responsible for timetable construction at the border section. In this case the second IM will have all the necessary information that is needed.

The Path Information element will begin and finish between:
- the timetable responsibility points (intermediate)
- between the origin and timetable responsibility point (if origin is in the network section)
- between the timetable responsibility point and destination point. (if destination is in the network section)

The Train Information element will have all mutual agreed points from the border section (especially state border point where is changed legal responsibility between IM’s and often between RU’s too). This solution solves the problem how to have the necessary information for both IM’s and both RU’s for every type of border section.

12.17 Usage of Identifiers in Planning-Related Messages

The explanation on how to utilize the concept of new identifiers in planning-related messages is given in the UML model attached to this Sector Handbook. The following UML diagrams are recommended (in the folder “Business Process Model/Business Use Cases/Planning/Handbook-Planning):
- 4.6 Planning
- 4.7 Utilization Notification
- 4.8 Planning Y-Traffic

12.18 Re-planning

After the planning has finished, the changes are possible in daily business. In order to cover the basic use cases that happen after the planning (and even after the operation phase has started) the following diagrams in the UML model of the concept for the new identifiers are provided (Business Process Model/Business Use Cases/Replanning/Handbook-Replanning):
- 4.9 Change of Train
- 4.10 Path Alteration
- 4.11 Path Modification
- 4.12 Train Modification
Path Alteration and Path Modification processes do belong to the planning category described in the chapter 12, however, we refer to the diagrams 4.10 and 4.11 here in order to point out how these processes are seen from the aspect of the utilization of the new identifiers.

The diagrams 4.9 and 4.12 contain the basic model for usage of the new messages UpdateLinkMessage and ObjectInfoMessage respectively. These messages are
proposed by the industry in order to keep the information about the relation (link) between the business objects Train and Path up-to-date.
Part C - Operation of Trains
13. Train Preparation

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Passenger Train Composition</td>
<td>13.1. Train Composition</td>
</tr>
<tr>
<td>This message is optional and it is subject to companies’ agreements.</td>
<td>RU sends the train composition message to all relevant IMs, with which the RU has a path contract for a journey section of the path if IM contractually requires receiving TC message.</td>
</tr>
<tr>
<td>13.1.1 Process for sending information to the IM</td>
<td>In open access model RU has to send TC to all involved IMs, but not necessarily at the same time and possibly not with the same content. In cooperation model RU has to send TC only to IM with whom it has contract for the path section.</td>
</tr>
<tr>
<td>Responsible RU sends the train composition message to the IM(s), with which the RU has a path contract for a journey section of the path and if IM contractually requires receiving the passenger train composition message.</td>
<td>On (short) border-sections, where the most of international trains are operated by RUs who do not have contracted path, IM may allow by Network statement or access contract that the RU with a path contract may delegate sending of TC to a partner RU, which runs the train on its behalf.</td>
</tr>
<tr>
<td>This message can be used also, for example, by the RU to fulfill the requirements to inform the IM about the technical information of the passenger train according to § 4.2.2.7 of decision 2012/757 (OPE TSI) if contractually agreed on by IM and RU. Global information related to the train is normally sufficient, but the IM can contractually request information related to the vehicles.</td>
<td>If the collaborating RU partners agree to send TC, the first (previous) RU has to send TC to the next RU only as soon as possible after departure of the train from the last station where it regularly changes its composition, latest before the train arrives to the interchange station.</td>
</tr>
<tr>
<td>The IM is informed of the planned train composition by the information exchanged during the planning phase. If the IM requests more information, a companies’ agreement describes the additional information and the sending process. An agreement can also concern operation phase (train preparation and train running) to the precise process (timing of sending message: before train starts running, during running, when the composition changes, etc.).</td>
<td>RU should send TC to IM before departure of the train, unless a national rule or contract does not state anything else. TC can be delivered also longer time in advance but from practical reasons the maximum is 72 hours before planned departure if afterwards.</td>
</tr>
<tr>
<td>According to network statements or companies’ agreement, this is either required for every train run or only for trains where the planned composition is changed.</td>
<td></td>
</tr>
</tbody>
</table>
the SM

According to the contract, RU sends the passenger train composition message to the relevant SM. This is to inform the SM about relevant technical information and about commercial information of the passenger train that can be used for passenger information.

Planned information

According to companies’ agreement, the RU sends to the SM the planned passenger train composition according to a calendar agreed between RU and SM.

Real time information

In operation phase, the RU sends the information before the train starts running to the SM managing the station where the train starts. The message is sent also to every other SM involved in this section and every time (triggered at the location) where the composition changes from the planned one.

When the train reverses direction in a station, the RU shall send a new composition message.

The message is sent in due time according to agreements between RU and SM.

Companies’ agreement indicates if the message needs or not to be sent if the train is running according to the planned composition known by the SM.

13.1.3 Process for sending information to the affected RUs

According to companies’ agreement, RU sends the passenger train composition message to the affected RUs, to inform them about the technical and/or commercial information of the passenger train.

no change of composition is expected. Whenever there is a change in the composition during the journey of a train, the RU responsible has to update this message to all parties involved.
<table>
<thead>
<tr>
<th>Page 119</th>
</tr>
</thead>
</table>

The next RUs inform the relevant IM and SM (see chapter 13.1.1 and 13.1.2).

Planned information

The RU sends a message to the affected RUs with the planned passenger train composition. This would be done at a time determined by the calendar agreed between concerned RUs. This is subject to the agreement between the RUs.

Real time information

In the operation phase, the RU should send the actual train composition information. This should be done in sufficient time for it to be used by the next RU. This is subject to the agreement between the RUs.

13.1.5 Content of the message

The Location and the section for which the transmitted composition is valid for the train run has to be given.

Composition is given for the global train (mainly relevant for IMs and RUs) and/or by unit (mainly relevant for SMs and RUs). A unit can be a coach, a locomotive, a trainset or a vehicle in a trainset.

The message contains elements for technical information (mainly relevant for RUs and IMs) and further elements intended for customer information (mainly relevant for RUs and SMs).

Technical information

For the information of the IM and the affected RUs, the technical characteristics having an influence on the train operations have to be given. The following elements have to be transmitted:

- train identification;
- location (and section) where composition is
created or changed;
- actual length (directly or through vehicles list)

All other information can optionally be transmitted.

Customer information

For the information of the SM and the next RU, the commercial information intended for customer information shall be given. The following elements have to be transmitted:
- train identification;
- location (and section) where composition is valid;
- complete list of vehicles or trainsets forming the train (by number or by type);
- when seats can be booked, the reservation number of the vehicle
- and the retail service ID (displayed in station and written on the ticket)

All other information can optionally be transmitted. They are related to:
- technical characteristics of vehicles and train;
- services offered in the vehicle;
- itinerary of vehicle groups if any.

13.3 – Process triggering the Train Ready message

The RU has to achieve train departure tasks as described in OPE TSI § 4.2.3.3, namely:
- the RU must define the checks and tests to ensure that any departure is undertaken safely (e.g. doors, load, brakes);
- the RU shall inform the infrastructure manager when a train is ready for access to the network;
- the RU must inform the infrastructure manager of any anomaly affecting the train or its operation having possible repercussions on the train's running prior to departure and during the journey.

Only second item is concerned by TAF/TAP Train Preparation process. The RU sends the Train Ready message to the concerned IM.
“Access to the network” means that the train, which was until now managed by the RU for the preparation, is now also managed by the IM. It implies that the IM can open the signal to permit to the train to begin its journey.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>[Not applicable.]</td>
<td></td>
</tr>
</tbody>
</table>

IM can define the time limit how long before scheduled departure of the train they need to get TR (or vice versa how long time they need to “release green signal” after reception of TR) in the Contract or Network Statement.

Each IM should define in the Contract or Network Statement also if they require TR also for trains arriving from other networks. In collaboration mode, TR message for these trains message was sent by “previous RU” to “previous IM”. In open-access mode the TR message was sent from RU to “previous IM”. Because TAF does not assume any data exchange between IMs, it is up to RUs to exchange TR information.

Local rules specify when a “train ready” messages has to be sent.

In practice, a “train ready” message is sent every time a train runs for the first time with its train number. So, the message is sent for example in following cases (unless it is stated that it is not necessary by national rules):

- empty train run from siding to the origin station;
- start of the commercial service with passengers on board from the origin station;
- empty train run from destination station to siding;
- start of the next commercial service performed by the same vehicles that just arrived at the station;
- splitting in two trains (Y traffic) for the train which receives a new number.

That excludes for example (unless imposed by the national rules):

- intermediate stops;
- intermediate planned composition change without change of train number;
- interchange point (between 2 RUs) and hand-over point (between 2 IMs) without changing of train number.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>For case where timetable is train ready message, the signal opens at departure time.</td>
<td>[Not applicable.]</td>
</tr>
</tbody>
</table>
If the train is not ready (or is expected not to be ready), the RU has also to inform the IM. An option is that the RU uses the same message “Train Ready” with a status “Train Non Ready” and if available, an indication of the expected delay and its reason. This is optional. Also, if the train is expected to be ready at a certain point in time, the message is sent with this forecasted time in “TrainReadyTime”. This is optional as well and has to be mandated by the Network Statement.

If information “train not ready” is sent, then an information “train ready” should follow when the train is ready.

The message “Train Ready or Not Ready” is sent a “short time” before departure. This “short time” depends on national rules described in network statement or in network access contract.

If Train ready information is required at some occasions according to national rules, the same message is used.

The “Train ready” message is mandatory.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP TSI only is relevant for TAP TSI only and has no impact on TAF.</td>
<td>TAF TSI only is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

However if the IM and RU agree not to use the message at given stations and if it is authorised in network statement or track access contract, the RU may inform the IM by using other process or standards than the TAP message, e.g.:

1. departure on timetable, when the train is ready and departure time is reached;
2. other technology or means are GSM-R, digital radio, analogical radio, phone near the signal, mobile phone used by crew, button on the platform, etc.

TAF defines TR as a structured message, sent from an information system of RU’s to an information system of IM. Anyhow, with aim to implement TAF in a practical and cost effective way, also other options should be possible. This is supported by other EU’s legislation, specifically TSI OPE and ERTMS. Therefore it is proposed to consider the following three options, how RU may deliver TR information to IM:

a) TAF TR message will be sent, including the necessary information (mainly Train Identification). It is up to the RU how they collect it and who initiates sending of the message. This way ensures that RU does have the TR data in its own information system.

b) GSM-R TR message will be sent, under condition that the train identification is provided in advance or by other means, e.g. when the relation between GSM-R number...
and the train is established. This has to be mentioned in Network Statement.

Moreover, some IM’s consider (in addition to the above options) also a web tool for collection of TR information e.g. via mobile phone or PDA with http or wap capability. Compliance of such procedure with TAF is not clear, but it may be offered as an additional service to all RU’s. Also in this option necessary information (mainly Train Identification) would have to be provided.

To inform the IM if the train is not ready, different means can be used.

If train is not ready, expected delay and Delay Cause may be transmitted. In practice, Delay Cause is transmitted by a dedicated message when it is known.

The process graph can be seen in Annex 13.

13.4 - Content of the message

To inform IM about “train ready”, train number is mandatory.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The status (train ready or train not ready) is mandatory.</td>
<td>The IM may accept the Train Ready Message in advance (in reality, the train is not yet ready, but RU knows when it will be ready). In this case the RU gives the planned/estimated time of train readiness. This should be part of the contract or network statement.</td>
</tr>
<tr>
<td>If train is not ready, expected delay and Delay Cause may be transmitted. In practice, Delay Cause is transmitted by a dedicated message when it is known.</td>
<td></td>
</tr>
</tbody>
</table>

If the train starts from a siding yard, optional information is added:
- siding track (to inform the IM which signal must be open);
- destination point (interesting for unplanned trains - trains running without planned path, e.g. short movements between station and siding yard).
All additional information has to be agreed by the correspondent RU/IM.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

13.5 – Information to the Station Manager

Stations Managers are informed of Train Ready according to national rules. The same Train Ready message can be used.

To inform the Station Manager if the train is not ready, different means can be used. The same message above can optionally be used (with status Not Ready).

These messages can be sent in due time under contractual agreement by:

- IM to SM or
- by RU to SM (depending on national railway organisation).

13.6 Identifiers
The utilization of the concept of the new identifiers for train preparation related messages is given in the UML model attached to this Sector Handbook in the folder “Business Process Model/Business Use Cases/Operation/Handbook-Operation”. The following diagrams are provided:
- 4.13 Train Composition
- 4.14 Train Ready
14. Train Running Information and Forecast

14.1 - Process triggering the Train Running Information message

The IM has to provide train reporting at appropriate reporting points indicating actual time and the delta-time value (as described in OPE TSI § 4.2.3.4.2.1). This message is sent to the contracted RU to inform RU controllers. It is not used to inform the driver.

The IM sends to the RU a Train Running Information message as soon as the train reaches contractually agreed reporting points (departure from originating station, intermediate arrival, intermediate departure, run through, arrival at final destination). The reporting points must have a scheduled time. Reporting at additional points than the agreed ones can be sent by the IM to the RU.

The time limit to send the message after the train has reached the reporting point is defined by national rules or contractual agreement. In practice, the sending is done in “real time” in case of electronic tracking and tracing systems, the time limit has to be agreed in case of manual input in the IT system.

Delay Cause is sent by a specific message (see chapter 18).

The process graph can be seen in Annex 13.

TAP TSI only
The section hereunder is relevant for TAP TSI only and has no impact on TAF.

TAF TSI only
This section hereunder is relevant for TAF TSI only and has no impact on TAP.

[Not applicable.]

Following the TAF TSI requirements, if the train arrives at the Interchange point and the Interchange between the two RUs is completed, the process of Train Preparation for the second RU has to take place. This is similar in the case of handling of the train at the handling point.

If the train is handed over between the IMs, for the first IM the process of train running is finished and for the second IM the process of train running is starting at the beginning, therefore with sending the first train running information and all relevant forecasts for its network.

32 In the exceptional case of ad hoc re-routing, the (new) scheduled time might not be known.
14.2 - Process triggering the Train Running Forecast message

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>The IM has to provide train forecast at appropriate forecast points (as described in OPE TSI § 4.2.3.4.2.2). This message is sent to the RU to inform RU controllers. It is not used to inform the driver.</td>
<td>Sending the train running forecasts</td>
</tr>
<tr>
<td>The IM sends to the RU a Train Running Forecast message as soon as the train reaches contractually agreed reporting points to deliver a forecast time at an agreed forecast point. This implies that the forecast time can be defined. If not, a Train Running Interrupted Message is sent.</td>
<td>After the departure of the train from the origin station, or after taking over the train from the previous IM at the handover point, the IM in charge sends the Train running forecast for the handover point to the next IM and all relevant forecasts (for the handover, all interchange, handling and reporting points relevant for forecast) on its network to RU who has booked the path on which the train is actually running (named “contracted RU”). In addition these forecasts could be sent before the planned departure of the train from the original station or from handover point if such information is available to the IM and IM has a process in place to do it. In the case of ETI (Estimated Time of Interchange), the RU transfers this message to the next RU and additionally to the Lead RU (LRU) for the transport – if there is one and if this is defined in the cooperation contract between RUs. In the case of ETH (Estimated Time of Handover), the IM receiving the forecast for the handover point from the previous IM may take this forecast as a basis for calculating the forecasts for its own network.</td>
</tr>
<tr>
<td>Forecasts points are agreed by RUs and IMs and are usually stations and handover points. Reporting points (triggering Train Running Forecast message) can be origin station, hand-over point from previous IM, interchange point between 2 RUs, points between stations and other agreed points. These reporting points can be different from the reporting points triggering Train Running Information message. The reporting points have usually a scheduled time, the forecast points must have a scheduled time.</td>
<td></td>
</tr>
<tr>
<td>The message can also be sent before the train starts running</td>
<td></td>
</tr>
<tr>
<td>It is also sent before train reaches the next reporting point if the forecast delay (increasing or decreasing) varies more than an agreed threshold. This threshold has to be agreed with the actors (current IM, RU and next IM). It could be different from freight trains and also according to passengers trains types (local, regional, long distance).</td>
<td></td>
</tr>
</tbody>
</table>
The message is also sent by the IM to the next IM involved in the train run (forecast point is generally the handover point), details of sending conditions are defined in a bilateral agreement.

The forecast time is also sent to the Station Manager in due time i.e. which permits to undertake all stations operations (voice announcements, information display on screens, etc. as agreed between SM and RU and/or IM) before the train arrives in or passes through the station. The message is delivered either from IM to SM, or from IM to RU to SM, under a contractual agreement according to the national railway organisation.

The time limit to send the forecast message after the train has reached the reporting point is defined by national rules or contractual agreement ("in due time" according to TAP TSI). With electronic or IT devices in the tracks or in signalling boxes, the calculation and the sending is usually done in “real time”. The “due time” has to be defined in case of manual input in the IT system.

The method to calculate the forecast time is defined by each IM. The process graph can be seen in Annex 13.

14.3 – Information to the Station Manager

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>The Station Manager receives Train Running Forecast messages and Delay Cause messages (see chapter 18).</td>
<td>[Not applicable.]</td>
</tr>
<tr>
<td>These messages are sent in due time under contractual agreement</td>
<td></td>
</tr>
</tbody>
</table>
14.4 - Content of the messages

The actual time (element LocationDateTime) is mandatory in Train Running Information.

The forecasted time (element LocationDateTime) is mandatory in Train Running Forecast.

For both messages:

The planned time of a train at the reporting point can be specified in

- BookedLocationDateTime: this is the last agreed (booked) time at this location, also after a re-planning
- ReferencedLocationDateTime: this is the originally (and internationally agreed/published) time.

If no re-planning has taken place, both elements contain the same time.

If the delay (actual/forecasted) is given in the TrainDelay section, the element AgainstBooked has to be used to indicate the delay according to the (last) booked timing. The AgainstReferenced can be used to indicate the delay to the originally planned timing.

The sequence made up from the elements “EnquiryReference” and “Date” are optional and can be used for TAF only.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>In addition, other existing standards may be used for the same purpose (i.e. the information provision) if there is a specific agreement between the parties involved to allow the use of these standards.</td>
<td>These messages are also issued as a response to the Enquiry Train Running Forecast /Information Message.</td>
</tr>
</tbody>
</table>

14.5 Identifiers

The diagrams related to the train information during the operation phase are provided in the UML model for the concept of the new identifiers in the folder “Business Process
Model/Business Use Cases/Operation/Handbook-Operation”. The following diagrams are provided:
- 4.16.2 Train Running Information
- 4.17.2 Train Running Forecast
15. Service Disruption/Train Running Interrupted

15.1 – Process triggering the message

Events leading to Service Disruption can be caused by external events (e.g. obstacle on tracks), IMs (e.g. CCS breakdown), RUs (e.g. locomotive breakdown).

If the train is stopped due to the disruption and no forecast of its further run is yet available, the Train Running Interrupted messages must be sent from IM to RU.

The meaning of “disruption” is understood nationally. Some events are clearly disruptions, as derailment, catenary galling, tracks under flood, etc. Others are more complex to classify, as locomotive or signal breakdown.

According to the national IM rules, each IM may apply a different threshold beyond which the Train Running Interrupted message must be sent. These thresholds must be agreed in a contract between IM and RU.

Train Running Interrupted messages serve to inform the RU that its train run has been interrupted and a forecast for its further run is not yet possible. The message is the trigger to inform the RU (and the next IM if relevant) and to agree on a solution on how to solve the problem.

The Train Running Interrupted message is sent by the IM to concerned RUs, to the next IM if relevant, and to the Station Managers (either directly or through the RU according to national organisation) for every train that is interrupted.

When RU is responsible and doesn’t know how long the repair will take, it has to inform the IM of this service disruption (according to § 4.2.3.3.2 of OPE TSI) by the best way and means (radio, phone, local IT messages, etc.). RU could use the same Train Running Interrupted message (this agreement is out of TAP obligations).

After the problem is analysed, decisions by RU after IM consultation can be (not exhaustive):

1. Delaying the train – the train will wait until disruption has been solved and then will continue as originally planned but with a delay. The accepted value of the delay depends on the negotiation between IM, RU and the next IM and on the situation at the national level. If this solution is taken, the updated Train Running Forecast messages are sent and the process of Train Running continues.

2. Cancellation of train run by RU – due to the disruption, the RU may decide to cancel the train run as it is. In this case, the process of train running for this train has ended and no further train running or train running interruption messages will be sent.
3. Rerouting of train – train will be rerouted, which may lead to the cancellation of the whole or just part of the original path. The relevant processes (path alteration, path cancellation or new path negotiation) might follow.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

If the time for the path alteration/cancellation/new negotiation is missing, the train journey modification can be applied. See chapter 17.

The process graph can be seen in Annex 13.

15.2 – Information to the Station Manager

Station Manager could be informed using national procedures.

Train Running Interrupted message (chapter 14) and Delay Cause message (chapter 18) can also be used according to agreement.

These messages are sent in due time under contractual agreement by:

- either IM to SM
- or IM to RU and then RU to SM (depending on national railway organisation) according to contractual agreement. The RU may change the value of the message before passing the message on to the SM.

15.3 – Information storage

To fulfil passenger’s rights regulation, TAP TSI requests to store service disruption data during 12 months.

As service disruption means only that the forecast cannot be sent immediately, the utility is limited as the train running information and forecast can nevertheless be sent later.

To fulfil the passenger’s rights regulation, the requirement for data to be stored should therefore be understood for Train Running Information instead.

It has to be compliant with the requirements of European Performance Regime process.
15.4 – Content of the message

The Location where the interruption occurs has to be given. If the train is stopped at a location not existing in the reference file, the next location from the reference file has to be given.

For the exact specification of the location the option element Detailed Description Of Location can be used (free text).

In addition the cause of interruption and the estimated duration (earliest and/or latest estimated end time) can optionally be stated. At the very moment of sending the message the possible cause don’t have to be yet identified. However, whenever possible the delay cause coding should be used.

The Internal Reference Identifier can optionally be used to specify the IMs internal system reference (e.g. incident number). The Internal Reference Number refers to a propriety identification used by an IM to reference a specific event. For example, the IM might give an incident number to a signal failure and refers to that signal failure for delay communication. The Internal Reference Number is not specified on European level.

The Train Running Interrupted message will be treated only as a message to inform about the interruption of a single train run.

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
<tr>
<td>In addition, other existing standards may be used for the same purpose (i.e. the information provision) if there is a specific agreement between the parties involved to allow the use of these standards.</td>
<td>However, it is possible for a single IM to adapt the message to be used also for multiple trains. But this is left to a decision of a single IM and is not being harmonised or regulated at the TAF TSI level.</td>
</tr>
</tbody>
</table>

15.5 Identifiers

The diagrams related to the train information during the operation phase are provided in the UML model for the concept of the new identifiers in the folder “Business Process Model/Business Use Cases/Operation/Handbook-Operation”. The following diagrams are provided:

- 4.20 Train Running Interrupted
16. Change of Track/Platform

This information is needed to enable the Station Manager to fulfil passenger information requirements according to TAP BP 4.2.12. The SM shall inform the passenger about changes of track (or platform) for train services. The information needs to be delivered to the SM.

16.1 – Process triggering the message

In case a train service shall not arrive or depart on the originally planned track/platform, the IM has to inform the RU and the SM (directly or via the RU) in due time before the arrival of a train (or before the departure at origin) for passengers information in station.

Beside local agreement, the following message can also be optionally used.

This message concerns the relevant information for passengers in stations, where to board a train. According to local circumstances, this is a track in platform (track adjacent to a platform) or a platform itself [33]. It does not cover the information on any other tracks on route of the running train.

The message is sent in due time under contractual agreement by:

- either IM to SM and RU;
- or IM to RU and then RU to SM (depending on national railway organisation).

The process graph can be seen in Annex 13.

16.2 - Content of the message

The message shall indicate the new track/platform, where the train service is foreseen to stop. Track or platform is usually defined by a subsidiary location code (with subsidiary type code respectively 01 and 15).

Difference between technical track and public track should be noted:

[33] The meaning of track can be understood differently. In this context, track means the location where a passenger can board a train.
The unique reference of the platform edge is mandatory. National rules have to identify unambiguous if the public name or the technical name of a track in platform is used.

In case local or national agreements require only the IM to inform the SM always, proprietary messages can be used as this is a fixed relationship.
17. Train Journey Modified

This information is needed to enable the Station Manager and the Railway Undertaking to fulfil passenger information requirements according to TAP BP 4.2.12 and 4.2.13. The SM and the RU shall inform the passenger about deviations from plan. The information needs to be delivered to the SM and/or RU. The same message can be used to inform the next IM if relevant: whole train cancellation, rerouting, retiming at hand-over point, etc.

17.1 Requirements on messaging

According to BP 4.2.12 RUs and/or IMs have to provide real time information on the train run to the SM and according to BP 4.2.13 RUs have to provide real time information on the train run to the passengers inside the train. For Material delays, the Train Running Forecast Message and the Delay Cause Message are appropriate.

For full or partial cancellation and Train re-routing, messages from Short Term Path Request (path alteration process) cover similar content. However, the process of creating a new path is outside the operational control and would be inappropriate for real-time information as quoted in BP 4.2.17 ("This BP does not include Traffic Management issues. The time limit between Short Term paths and Traffic Management path changes is subject to Local Agreements.").

Therefore, a Train Journey Modified message can be used.

17.2 – Process triggering Journey Modified message

In case a train service cannot use its planned path and serve its planned stopping pattern, RU and IM have to decide on the continuation of the train (this could start after the IM has issued a Train Running Interrupted message). The following possibilities can occur:

- The whole train service is cancelled completely
- The train service is partly cancelled (could be at the beginning, the end or between intermediate points of the train journey).
- One or more single stops are cancelled.
- One or more single stops are added.
• The train is rerouted. Rerouting can be understood as a combination of stop cancellation and stops added.

If these solutions are envisaged for future train runs, these shall be handled within the Short Term Path Request. For operations (non-future, the train is running or, according to national rules, prepared and/or foreseen to run) the Short Term Path Request processes may be too slow to provide the information in real time.

Specific messages, are foreseen and can be optionally used according to contractual agreement. These messages have only informational character and do not substitute the formal process of train journey modification.

If not otherwise specified in national rules, there is no need to update the (short term) planning IT system with the modified journey.

These messages do not automatically change the path contract.

The operational messages on journey modified are sent once IM and RU (and SM if relevant) have agreed (manually or using standards outside TAP TSI) on the continuation of the train. They can be sent from

• RU to SM
• IM to SM
• IM to RU (and either RU to SM)

The information in these messages is used for customer information.

17.3 Change of Train Number (OTN)

In case the modification of the train journey requires a change of the train number (OTN), the IM has to inform the RU about the new OTN. This can be done using manual processes and manual input into the individual systems of IM, RU and SM would then be needed.

Process may change when TRID is implemented.

17.4 Content of the Message

IM or RU informs the SM and/or the contracted RU on the modified journey.

The journey modified message serves the different scenarios.

• Whole Train Cancellation:
 The indication “Whole train cancellation” is given. The first and the last location of the (foreseen and now cancelled) train
service is given.

- Partial Train Cancellation:
The indication “Partial train cancellation” is given. The first and the last planned location that are no longer served by this train service are given. All stations in between, including the given first and last planned location, are not served by this train anymore.
In case this partial train cancellation is given between intermediate stations, it is understood that there is no through train anymore.

- Station Stop Cancellation:
The indication “Station Stop Cancellation” is given. Only the given location (1 to many) is cancelled. The train continues to serve all other planned stations.

- Additional Station Stop:
The indication “Additional Station Stop” is given. All the given locations (1 to many) are added to the original train. All other planned stops are served as planned.

- Rerouting:
The indication “Rerouting” is given. Every single station stop that is no more served has to be given with the “station stop cancellation” status. Every single new station stop that is added due to rerouting has to be given with the “additional station stop” status.
Rerouting is in fact a mixture of “Station Stop Cancellation” and “Additional Station Stop”.

- Retiming
A station stop can receive a new timing, following the train modification. The elements Scheduled Time at Location and Train Location Status have to be filled then.

One message can include a mixture of these scenarios. Therefore, the Train Journey Modification is 1 to many.

In case local or national agreements require only the IM to inform the SM always, proprietary messages can be used as this is a fixed relationship.
18. Train Delay Cause

This chapter applies when IM has to inform the RU (and if relevant next IM) of the reason of a delay, this delay could appear during normal running, service disruption, rerouting, journey modification, etc (see in particular chapters 14 and 15).

18.1 - IM informs the RU on the delay cause

The IM has the responsibility to find when possible the cause of a delay, according to national rules, and to enter the code of the Delay Cause into the IT system.

The dedicated Delay Cause message is issued by the IM to the contracted RU as reasonably possible to make known the cause of an additional delay in a train's journey.

The acknowledgement of the Delay Cause is made by internal process. Dispute process is described by national rules.

Unless otherwise agreed, the Delay Cause message has not to be sent to the next IM (the forecast message at hand-over point is sufficient).

Under agreement, the Delay Cause can be sent from a RU to the partner RU(s).

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

If the RU wants to inform the passengers in stations of the reason of a delay, the Delay Cause message can be used. The message is delivered to the Station Manager under a contractual agreement by the IM or the RU according to the national railway organisation. It is delivered in due time i.e. which permits to undertake the announcements (voice, screen, etc.) before the train arrives in the station.

Main rules concerning Delay Cause message are:
- every delay (incl. every additional delay34) should be reported, not only those happening at reporting points;

34 Additional delay – occurs, when the new delay event appears. It is the first delay and every increase of the delay during the train run. Examples:
- a) train was on time in previous point and now is delayed for 5 minutes: additional delay is 5 minutes;
- b) train had 5 minutes delay and now is delayed for 7 minutes: additional delay is 2 minutes;
- c) train was 10 minutes in advance and now is only 5 minutes in advance: no additional delay;
- d) train was 5 minutes in advance and now is 3 minutes delayed: additional delay is 3 minutes.
• if a delay occurs at points not included in reference file, it will be shifted to the next reference file point;
• Delay Cause message should be sent at the moment when the code for a delay is specified (according to UIC leaflet 450-2)35 and always when the code is changed;
 o one message is sent for each Delay Cause.
• in case the reason of the delay is changed (but the delay duration stays the same), the updated message with the new Delay Cause code and status alteration will be sent,
• in case the original delay time is changed (e.g. split of delay into more causes) the deletion of the original messages must be sent and new messages with the new codes must be sent;

It is out of the scope of the TAF and TAP TSI to define the detailed rules for coding or validating the delay causes, or to specify any threshold values for coding of delays. The threshold for coding the additional delay is depending on the national law or internal IM rules. The only requirement is that whenever the code for the delay is defined or changed, the Delay Cause message should be sent to the contracted RU.

<table>
<thead>
<tr>
<th>18.2 - RU informs the IM on the Delay Cause</th>
<th>18.3 - RU informs the IM, SM and next RU about restrictions on the rolling stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>In case the RU wants to inform the IM, it can use the same Delay Cause message from RU to IM according to agreement. (This agreement is outside the obligations described in TAP TSI).</td>
<td>The RU must inform the IM of any modification or anomaly to the characteristics of the train affecting its performance or affecting the ability to accommodate the train in its allocated path (§ 4.2.2.7 and § 4.2.3.3.2 of OPE TSI decision 2012/757), e.g. any operational restrictions on a vehicle concerned (gauge, speed restrictions, etc.). According to agreed rules, the RU could also inform involved RU(s) and/or SM(s) of any modification or anomaly affecting the access doors, internal fitting and comfort requirement, or in case of non availability of commercial services that were planned. In this chapter, the word “restriction” could concern:</td>
</tr>
</tbody>
</table>

35 Excluding unspecified default codes (like „00”)
a) any modification in the train composition that prevents the train to run according to the allocated path (e.g. addition of a coach with lower maximal speed than the planned speed);
b) any anomaly or defect that implies specific disposition in the train preparation, access to network authorisation, train run;
c) any anomaly or defect that decrease heavily the level of services offered to the passengers (e.g. air conditioning failure in summer).

For the restrictions a) and b), the process between RU and IM of information exchange and route continuation/alteration has to be according to network statement. The RU must follow the operational process, if not available the RU has to wait for the feedback of the IM before running the train.

The information about restriction is transmitted prior to departure and during the journey according to agreed rules (which define the timing) from RU to IM and/or from RU to the involved RUs and/or from RU to the SM, depending on the kind of restriction.

The information on restriction is out of TAP obligations. According to agreement between the parties, an optional message (called Rolling Stock Restriction message) can be used to transmit the relevant information. In case the restriction information is included in the Passengers Train Composition message, the Rolling Stock Restriction message is not needed.

Restriction is related to a vehicle. Restriction on train results from restriction to vehicle.

Restrictions are coded by a 2-numeric code. Restrictions required only on national level are identified by the 2-alphabetic code of the country completed by a 2-numeric code.

The optional Rolling Stock Restriction message indicates:
- the identification of the train in which the concerned vehicle is incorporated;
- the vehicle number;
- the codification of the restriction;
- if the restriction is active (case by default) or not (cleared during the journey);
- if relevant the location where the anomaly was detected.

18.4 – Information to the Station Manager

Delay Cause message is sent in due time under contractual agreement by:
- IM to SM or
by IM to RU and then RU to SM (depending on national railway organisation). The RU may change the value of the message before passing the message on to the SM.

The process graph can be seen in Annex 13.

18.5 - Content of the message

The DelayLocation where the delay occurs has to be given. If the train is stopped at a location not existing in the reference file, the next location from the reference file has to be given.

In addition the time, when the delay occurred (DelayEventDateTime), the amount of the delay (DelayTime) and the cause of delay (DelayCause) have to be stated. The delay cause coding has to be used.

The Internal Reference Identifier can optionally be used to specify the IMs internal system reference (e.g incident number). DelayCodingDateTime can optionally be used as a time stamp when the coding was done. This can serve to create a history of coding.

18.6 Identifiers

The diagrams related to the train information during the operation phase are provided in the UML model for the concept of the new identifiers in the folder “Business Process Model/Business Use Cases/Operation/Handbook-Operation”. The following diagrams are provided:

- 4.21 Train Delay Cause

Additionally, the following diagrams can also be used since they cover some use cases from the daily business:

- 4.18.2 Train Delay Performance
- 4.19.2 Train Forecast at Reporting Location
19. Passengers information in station area and vehicle area

<table>
<thead>
<tr>
<th>TAP TSI only</th>
<th>TAF TSI only</th>
</tr>
</thead>
<tbody>
<tr>
<td>The section hereunder is relevant for TAP TSI only and has no impact on TAF.</td>
<td>This section hereunder is relevant for TAF TSI only and has no impact on TAP.</td>
</tr>
</tbody>
</table>

Information has to be provided by displays or voice announcements in stations at which trains performing international service stop and within the vehicle area of trains performing international service. That concerns planned information and also real-time information in case of deviation of the plan. This chapter shows which chapters need to be consulted to get the real time information.

19.1 – Passengers information in station area

The Station Manager has the responsibility to inform the passengers with train running information within the station via voice announcements and/or display.

This applies at least in respect of stations at which trains performing international services stop.

Information described in TAP TSI § 4.2 is provided to Station Managers by IM and/or RU according to contractual agreement.

Real time information is provided according to messages described in sections 12 to 18. Other information is provided under contractual agreement (means, rules, process, etc.)

19.2 – Passengers information in vehicle area

The RU has the responsibility to inform the passengers with train running information within the vehicle area via voice announcements and/or display systems. This applies at least to all trains performing international services.

Information described in TAP TSI § 4.2 is under RU responsibility or is provided by IM to RU according to contractual agreement.

Real time information is provided by IM to RU according to messages described in sections 12 to 18. Other information is provided under contractual agreement (means, rules, process, etc.)
Part D - Overall requirements
20. General remarks

This chapter provides information on general requirements, further explanations and information to be taken into account when implementing the RU/IM Message exchange.

Use of new identifiers and their combination with the existing legacy identifiers is explained in chapter 8 and additionally referenced through the chapters 12, 15, 16 and 18.

For the full concept of the new identifiers the following attached documents and references are provided:
- UML Model of the concept for the new identifiers
- Update Link Framework
- UpdateLinkMessage
- ObjectInfoMessage
- Baseline document: WG10 Identifiers Handbook, endorsed by the industry after TAF Phase 1
- E-Learning platform of RNE containing the extended material of WG10 Identifiers Handbook (http://elearning.railneteurope.info)

21.3 Use of common elements in the messages

Free text field
Normally local language is to be used but in bilateral agreements a different rule could be agreed upon.

Message reference
In case of alteration or deletion of the message the reference to the original message should be made via the functional data as a key (e.g. Train Ident, Location Ident).

21.4 Mandatory or Optional Elements in the Messages

Within the message structure, there are number of elements that are either mandatory or optional.

- Mandatory elements have to be in the message content for all message exchange.
- Optional fields only need to be filled in where there is a need to have them between RU/IM or where network regulations may well dictate or where there is mutual agreement to do so.

Optional status may well apply to individual elements or groups of elements (e.g. the use of ON DEMAND path element may only be relevant to the RU and IMs in certain networks where it is possible to have prearranged paths).
Optional elements may also apply to groups of elements where the entire group may be either needed or not needed.

Where a message element is identified as ‘optional’, this may be changed by the IM who may declare it as mandatory according to the requirements in their Network Statement for their path section. It will be mandatory for interoperable/international trains where there is a requirement to use an element as per their national regulation. This will mean that all validation rules of the element(s) will be applied as per normal.

In addition, some elements and sub-elements are conditional. That means, they are optional in a technical sense, but if there is a specific business need or purpose – based on IMs requirement (published in the Network Statement) – some or all of the (sub-) element will be mandatory.

There are also a number of elements that are either mandatory or optional depending on whether they are for freight or passenger traffic.

Several message elements are global, that means they are used for communication purposes in several processes (e.g. for planning and operations). E.g. some message elements used in the ‘Short-term path request’ have to be optional from the technical point of view because they are optionally in operations, but must be mandatory when they are applied for planning and vice-versa.

21.5 Message exchange partners

Messages are exchanged between parties having a business relation with each other. That means that a message exchange is between the

- IM and the RU that wants to or already has booked a path with this IM
- IM and the neighbouring IM involved in the train panning or operation
- IM and/or RU and the SM involved in the operation of the train
- RU and any partner RU involved in the train planning or operation (this possibility is on bilateral agreement outside TAF and TAP obligations).

For example, for a train running on two IMs and operated by two RUs (one per IM) the information flow can be

- IM 1 to IM 2 and then IM 2 to RU 2; or
- IM 1 to RU 1 and RU1 to RU 2 depending on the agreement.

21.6 Masterplan

Each individual actor has submitted its own implementation masterplan for TAF and TAP.
These masterplans were consolidated in two European-wide documents, respectively 20130117_TAF-TSI-Master-Plan.pdf and 20130428_TAP Master Plan Delivery_final.pdf:

The target dates contained in the consolidated masterplans are:
- Recommended for actors having delivered their masterplan (delivered dates remain mandatory);
- Mandatory for actors having not delivered a masterplan.

The reporting process is described in the governance document TAF_org 2014 20130829 V8.pdf.
21. Data quality

In order to efficiently use the RU/IM message exchange and the related applications good data quality is essential. Data quality requirements are shown in the following picture:

Generic data quality requirements

- **Completeness**
 - All necessary data is stored in the databases
 - All messages sent are received

- **Conformity**
 - The right standard is used

- **Correctness**
 - The right data is used (esp. related to reference data)

- **Actuality**
 - Data is up to date

- **No redundancy**
 - Databases have no redundant data.

- **Timeliness**
 - Messages arrive in time

The following general rules to reach a high data quality in the RU/IM message exchange apply:

- Data quality is the responsibility of the sender.
 - Before having been sent messages must be checked by the sender in order to ensure that its is well-formed, complete and valid (against the message/elements as defined in the message catalogue).
- Data quality (can and) will be measured by the receiver of the message.
- The receiver talks to sender in case the data quality needs to be increased.
- Messages sent shall be secured by signing, encrypting\(^\text{36}\) and compressing the message:
 - All IMs and RUs involved in the communication shall have the certificate from the Certification Authority to use encryption and signing certificate.
 - Encryption (using SSL/TLS) shall be provided assuring privacy and authentication of the sender and avoid man in the middle attacks.
 - Signing shall be used to assure integrity of messages.
 - Two actors keeping a communication should have the certificate generated with same Root certificate to work with encryption functionality and a security alias of the certificate should be provided.

\(^{36}\) It is up to the involved parties to decide whether every message (type) needs to be signed and encrypted beside the secure transport.
The following possibilities are supported by the RU/IM architecture to detect and increase data quality:

- Syntactically incorrect messages are placed in temporary storage for analysis and reporting (Dead letter queues - storage of message that could not be delivered in a Common Interface or on application level). This would indicate problems in format data quality.
- In case a message is not delivered (no acknowledgment by the CI) the message can still be found in sending queues. – It is up to the sender to check the delivery.
- The Answer Not Possible message (ANP) in the Path Request process can be used to report and measure semantic data quality (content level). The ANP message is sent from the receiver of an earlier message to the sender of that earlier message. The message is used when the information in the original message was not good enough to create an answer. The message supports a list of elements that have errors or could also be business related errors (e.g. a schedule is not logical). The level of detail of this ANP message will depend on the application that emits this message. It should be as detailed as feasible with the legacy system with the minimum information: Message was not usable. Detailed information, if supported by legacy system, shall use a subset or all of the common error codes described for ANP.
- In case of the same message with the same content (e.g. train running message for train X at location Y sent several times), rules like “Last message wins” would avoid the handling of ambiguous message information. This has to be implemented at application level.
- For the central reference database, specific Entities are responsible for the storage of specific codes (e.g. national entity for primary codes in its country). This Entity has to makes sure, that one location is coded once – avoiding ambiguous codes like 10 different primary codes for the same physical station (for example only). See also chapter 9.6 for quality requirements on reference data.
- Timeliness of message exchange can be checked on application level, e.g. comparing the actual timing of a train run and the timestamp of the message arriving. It depends on contractual agreements.
22. Functional Governance

This chapter provides information about contact and processes for receiving the certification for the RU/IM message exchange and for functional changes. This includes ways to request code values and also ways to request changes in the message structure.

23.1 Code allocation

Codes are divided into three categories:

- **A** for functional codes that have no impact on the message exchange. It represents functional information that is sent through the messages for functional use within the business processes (e.g. planning of a short term train)
- **B** for process codes that have a relevance for the way applications deal with the message (e.g. the status of the message new, update, delete)
- **C** for external codes that are used within the business processes but are controlled by different domains (e.g. Retail, UN Codes) that have their own governance processes. A reference to the controlling body is given.
- **D** for codes used only in messages out of the scope of TAF and TAP.

Processes for the maintenance of codes

- Category A and Category B
 Any involved actor (e.g. RU, IM, AB, SM) can put the request for a change (new, alteration, deletion) to the <sector RU/IM governance entity>. The entity can consult relevant expert working groups on the need of that change. The proposal is submitted to ERA CCM process (described in document ERA_Telematics_CCM_Guide_V1_3_r11-09-2013.docx). If relevant, a migration strategy has to be developed as well.

- Category C -> see respective controlling body. The entity publishes these codes as well for information as soon as they are known. A delay notice until the use of these codes can be agreed.

- Category D
 Any involved actor (e.g. RU, IM, AB, SM) can put the request for a change (new, alteration, deletion) to the <sector RU/IM governance entity> [tbc]. The entity can consult relevant expert working groups on the need of that change. The proposal is agreed according to the sector internal governance (tbd). If approved, a migration strategy has to be developed as well.

23.2 Change of messages and/or the structure of the reference file

Any involved actor (RU, IM, AB, SM) can put the request for a change (new, alteration, deletion of a message) to the <sector RU/IM governance entity>. The entity can consult relevant expert working groups on the need of that change. The working group can reject,
ask for clarifications and give recommendations, eventually following an impact analysis within a given timeframe. If approved, a migration strategy has to be developed as well. The proposal is submitted to ERA CCM process (described in document ERA_Telematics_CCM_Guide_V1_3_r11-09-2013.docx). If relevant, a migration strategy has to be developed as well.

actoractorChange of message can only be once per year on a given date. Migration plan needs to allow companies to implement it (communication of change at least 1 year before usage).

A migration plan should be proposed by the WG, including a minimum period in which the change is optional and a time from which the change is mandatory.

The WG of the TAF and TAP governance entity should take into account both business and IT needs.

23.3 Allocation of certificates for messages

Every participant in the RU/IM message exchange will have to use valid (X509) certificates for secure communication and if needed for message encryption and signature. These certificates are issued under the authority of the governance entity.

Every company has to register once to central admin (currently this is the admin of CCG); The governance admin service will verify the user and will subsequently grant access to a secured website where certificate can be downloaded.

The Expiry dates of the certificate are mentioned in the certificate. The company has to make sure to get a new certificate before.

23.4 Access to reference data

Every actor in the RU/IM message exchange needs to register for the message exchange (see 23.3 on allocation of certificates) through the governance admin service. Following certification, the actor has access to all location codes stored in the Central Repository Domain. The reference data can be used for all TAP and TAF purposes and related processes. To perform these processes, actors may give the data to suppliers under the precondition that the actor ensures the data is solely used for these purposes and is not used for other commercial activities.

Access to all reference data will be provided through the use of a reference data service managed by the governance entity. This service will meet the requirements described in this Implementation Guide or as subsequently decided by the governance entity. Access requirements are not subject to approval by the TAP-CCM or TAF-CCM.
23.5 Contact data

The relevant contacts for registration, certification, code attribution and change requests is given in Annex 23.
23. Glossary

See Annex 24.
24. List of Appendices

Messages

- **Annex 1 – Message Catalogue** (target TAP TD B.30 and TAF Annex D.2, Appendix F)

 The Messages are in xsd. Note that rtf/document formats should only be looked at by xml/message experts and it is not recommended to be printed for all others. It is anyhow recommended to look at the specific messages in an xml-editor/viewer.

Annexes to Part A

- **Annex 9.1 Data Model for Reference Files**
 The Class diagram is used from the Central Repository Domain.

 Within the functional data model (class diagram) the tables (classes) are described with their elements. The relations between the Tables are maintained. Elements are described by their Names and Type.

- **Update Message for Locations**
 The XML schema shows the message to be used to update the CRD for locations by National Location File Entity or companies for Subsidiary locations for defined Subsidiary type code. → see xsd file in Annex 1, including this message

- **Annex 9.3 - HMI for Maintenance of Location**
 The screen shows the draft User interface to update the CRD for update the locations by privileged users.

- **Annex 9.4 - Table of codes for Subsidiary locations (subsidiary type codes)**

- **Annex 9.5 - Code structure for initial population of and manual Bulk updates**
 This structure can be used for those companies wishing to upload from existing databases (ENEE).

- **Annex 10 - Code lists**
 Index of the code lists and suggested or existing responsible bodies for their maintenance. Code lists that have been identified as category C are essentially existing lists that are already maintained by an external responsible body.

 The same xls-file contains the relevant codes.

Annexes to Part B

- **Annex 12.2 – Elements specific to actors**
- **Annex 12.3 – Message Examples**
It is not recommended to print this Annex unless the reader wants to read core xml. The messages in these annex can be looked at in any xml-Editor, that allows also to reduce the view to the necessary content. The annex contains examples for the business scenarios of chapter 13 and one example for the Change of Track message (chapter 16).

Annexes to Part C Operations
- **Annex 13**
The annex document covers all operational processes diagrams, containing the TAP and TAF process diagrams relevant for chapter 13 to chapter 20.

Annexes to Part D
- **Annex 20: General remarks**
 - UML Model (*.eap file, HTML and RTF – the last two are zipped)
 - The list of comments and changes (excel file)
 - The list of additional objects that can be identified with the same identifier structure as TrainID, PathID, PathRequestID, CaseReferenceID
 - Update Link Framework document
 - UpdateLinkMessage, ObjectInfoMessage and ErrorMessage
- **Annex 23 - Contact**
- **Annex 24 - Glossary**